I am stuck on how to evaluate whether the following condition is true:
Let $\{k\}$ be the fractional part of a real number such that $\{k\} = k - \lfloor{k}\rfloor$.
if $\{\frac{x}{2}\} < \frac{1}{2} + \frac{\{x\}}{2}$, does it then follow that:
$$\{\frac{x+1}{2}\} \ge \frac{1}{2} + \frac{\{x+1\}}{2}$$
I can see that:
$\{x+1\} = \{x\}$
if $\{\frac{x}{2}\} < \frac{1}{2}$, $\{\frac{x+1}{2}\} = \{\frac{x}{2}\} + \frac{1}{2}$
$\frac{\{x\}}{2} < \frac{1}{2}$
So, it follows that $\frac{1}{2} + \frac{\{x\}}{2} < 1$
I can that it is true in the case where $\{x\} = \frac{1}{2}$ since:
$\{\frac{1}{4}\} < \frac{1}{2} + \frac{\{\frac{1}{2}\}}{2}$ and $\{\frac{3}{4}\} \ge \frac{1}{2} + \frac{\{\frac{1}{2} + 1\}}{2}$
Can anyone help me to evaluate this condition is always true?
Thanks,
-Larry