I am investigating the generality of Lemma 1 in Nagura's proof that there is always a prime between $x$ and $\frac{6x}{5}$.
In Lemma 1, Nagura establishes when $n > 1$, $x \ge 1$:
$$\frac{1}{n}\log\left(\left\lfloor{x}\right\rfloor!\right) - \log\left(\left\lfloor\frac{x}{n}\right\rfloor!\right) \ge \frac{1}{n}\log\Gamma\left(x\right) - \log\Gamma\left(\frac{x+n-1}{n}\right)$$
and for $n > 1$, $x \ge n$:
$$\frac{1}{n}\log\left(\left\lfloor{x}\right\rfloor!\right) - \log\left(\left\lfloor\frac{x}{n}\right\rfloor!\right) \le \frac{1}{n}\log\Gamma\left(x+1\right) - \log\Gamma\left(\frac{x+1}{n}\right)$$
I am trying to establish a similar inequality for $\frac{2}{n}\log\left(\left\lfloor\frac{x}{2}\right\rfloor!\right) - \log\left(\left\lfloor\frac{x}{n}\right\rfloor!\right)$
Here's what I am trying to prove:
If $\left\{\frac{x}{2}\right\} \ge \frac{1}{2} + \frac{\left\{x\right\}}{2}$, $n > 2$, $x \ge n$, then:
$$\frac{2}{n}\log\left(\left\lfloor\frac{x}{2}\right\rfloor!\right) - \log\left(\left\lfloor\frac{x}{n}\right\rfloor!\right) \le \frac{2}{n}\log\Gamma\left(\frac{x+1}{2}\right) - \log\Gamma\left(\frac{x+1}{n}\right)$$
Here's the argument:
Let $\left\{k\right\}$ be the fractional part of $k$ so that $\left\{k\right\} = k - \left\lfloor{k}\right\rfloor$.
Since $\frac{\left\lfloor{x}\right\rfloor+1}{n} \le \left\lfloor\frac{x}{n}\right\rfloor+1$ (see answer here),
$$\frac{2}{n}\log\left(\left\lfloor\frac{x}{2}\right\rfloor!\right) - \log\left(\left\lfloor\frac{x}{n}\right\rfloor!\right) \le \frac{2}{n}\log\Gamma\left(\frac{x}{2} - \{\frac{x}{2}\} + 1\right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right)$$
Since $\left\{\frac{x}{2}\right\} \ge \frac{1}{2} + \frac{\left\{x\right\}}{2}$, it follows:
$$\frac{2}{n}\log\Gamma\left(\frac{x}{2} - \{\frac{x}{2}\} + 1\right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right) = \frac{2}{n}\log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor}{2} + \frac{\left\{x\right\}}{2} - \left\{\frac{x}{2}\right\} + 1\right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right) \le \frac{2}{n}\log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor}{2} + \frac{1}{2}\right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right) = \frac{2}{n}\log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{2} \right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right)$$
To complete the argument, I need to show that $\frac{2}{n}\log\Gamma\left(\frac{x+1}{2}\right) - \log\Gamma\left(\frac{x+1}{n}\right)$ is an increasing function.
Since $n > 2$, it follows that:
$\frac{x+1}{2} > \frac{x+1}{n}$
Using $\frac{\Gamma'}{\Gamma}\left(s\right) =\int_0^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-st}}{1 - e^{-t}}\right)dt$, when $s > 0$, we have for ($x > 0$):
$$\frac{\Gamma'}{\Gamma}\left(\frac{x+1}{2}\right) - \frac{\Gamma'}{\Gamma}\left(\frac{x+1}{n}\right) = \int_0^{\infty}\frac{1}{1 - e^{-t}}\left(e^{-\frac{x+1}{n}t} - e^{-\frac{x+1}{2}t}\right)dt > 0$$
Since $\frac{2}{n}\log\Gamma\left(\frac{x+1}{2}\right) - \log\Gamma\left(\frac{x+1}{n}\right)$ is an increasing function, it follows:
$$\frac{2}{n}\log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{2} \right) - \log\Gamma\left(\frac{\left\lfloor{x}\right\rfloor+1}{n}\right) \le \frac{2}{n}\log\Gamma\left(\frac{x+1}{2}\right) - \log\Gamma\left(\frac{x+1}{n}\right)$$
Does this work? Have I made a mistake? If I haven't made a mistake is there an easier way to prove it?
Thanks,
-Larry