1

I want to derive this formula

$$r_1^2.r_2^2.r_3^2.....r_n^2=r^{2n}+c^{2n}-2r^nc^n\cos(n\theta)$$

where $r_1, r_2, r_3....r_n$ are distances of a Point $P(r,\theta)$ from equally spaced n points, say $A_1, A_2, A_3....A_n$ on a circle of radius $c$ with $O$ as the centre of the circle as well as the origin

As the circle is divided into n equal part, we can say $$\angle A_1OA_2=\angle A_2OA_3=.....\angle A_{n-1}OA_n=\frac{2\pi}{n}$$

Therefore each of these points can be written as, $$A_k=ce^{i(k-1)\frac{2\pi}{n}}\quad\forall\;k=1,2,3...n$$

Now I can write $$r_k=|re^{i\theta}-ce^{i(k-1)\frac{2\pi}n}|$$

Now I was thinking of using $|u||v|=|uv|$, so the product can be written as $$\prod_{k=1\to n} r_k^2=|(re^{i\theta}-c).(re^{i\theta}-ce^{i\frac{2\pi}{n}}).(re^{i\theta}-ce^{i\frac{4\pi}{n}})....(re^{i\theta}-ce^{i(n-1)\frac{2\pi}{n}})|^2$$ $$\implies \prod_{k=1\to n}r_k^2=|r^ne^{n\theta}-r^{n-1}e^{i(n-1)\theta}*c\left(\sum_{k=1\to n}e^{i(k-1)\frac{2\pi}{n}}\right)+r^{n-2}e^{i(n-2)\theta}*c^2\left(\sum_{k_1=1\to n, k_2=k_1+1\to n}e^{i(k_1-1)\frac{2\pi}{n}}e^{i(k_2-1)\frac{2\pi}{n}}\right)+.....(-1)^nc^n\prod_{k=1\to n}e^{i(k-1)\frac{2\pi}{n}}|^2$$

Now, how do I proceed from here? Do I have to reduce all the exponential in brackets to simpler forms. For example some are coming out to be simple,

$$\begin{align} \sum_{k=1\to n}e^{i(k-1)\frac{2\pi}{n}} & =1+e^{i\frac{2\pi}{n}}+e^{i\frac{4\pi}{n}}+e^{i\frac{6\pi}{n}}+.....e^{i\frac{(n-1)2\pi}{n}} \\ & = \frac{1*\big((e^{i\frac{2\pi}{n}})^n-1)}{e^{i\frac{2\pi}{n}}-1} \\ & = 0 \end{align}$$

or the last one

$$y=\prod_{k=1\to n}e^{i(k-1)\frac{2\pi}{n}}$$ $$ \begin{align} ln\,y &= 0+i\frac{2\pi}{n}+i\frac{4\pi}{n}+....i\frac{(n-1)2\pi}{n}\\ &=i\frac{2\pi}{n}(1+2+3+...(n-1))\\ &=i\frac{2\pi}{n}*\frac{(n-1)n}{2}\\ &=i(n-1)\pi \end{align}$$ $$ \implies y=e^{(i(n-1)\pi)}$$

Honestly, this seems to be a very tedious process, which is why I think I am wrong in my approach. Any help is appreciated

Bernard
  • 179,256

1 Answers1

3

Write $$ p_n (cz) = \prod\limits_{k = 0}^{n - 1} {\left( {cz - ce^{\,i\,k{{2\pi } \over n}} } \right)} = c^{\,n} \prod\limits_{k = 0}^{n - 1} {\left( {z - e^{\,i\,k{{2\pi } \over n}} } \right)} = c^{\,n} \left( {z^{\,n} - 1} \right) $$ then $$ \eqalign{ & p_n (cz)^{\,2} = \prod\limits_{k = 0}^{n - 1} {\left( {cz - ce^{\,i\,k{{2\pi } \over n}} } \right)^{\,2} } = c^{\,2n} \left( {z^{\,n} - 1} \right)^{\,2} = \cr & = c^{\,2n} \left( {z^{\,2n} - 2z^{\,n} + 1} \right) \cr} $$ and $$ p_n (cz)\,\overline {p_n (cz)} = \prod\limits_{k = 0}^{n - 1} {\left| {\left( {cz - ce^{\,i\,k{{2\pi } \over n}} } \right)} \right|^{\,2} } = c^{\,2n} \left| {\left( {z^{\,n} - 1} \right)} \right|^{\,2} $$

Put $cz = \rho e^{i \theta} $ ....

G Cab
  • 35,964