$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\sum_{r = 0}^{n}\pars{-1}^{r}{n \choose r}
{1 \over \pars{r + 1}^{2}}} =
\sum_{r = 0}^{n}\pars{-1}^{r}{n \choose r}\
\overbrace{\bracks{-\int_{0}^{1}\ln\pars{x}\, x^{r}\,\dd x}}
^{\ds{1 \over \pars{r + 1}^{2}}}
\\[5mm] = &\
-\int_{0}^{1}\ln\pars{x}\sum_{r = 0}^{n}{n \choose r}\pars{-x}^{r}\,\dd x =
-\int_{0}^{1}\ln\pars{x}\pars{1 - x}^{n}\,\dd x
\\[5mm] = &\
-\bracks{\xi^{1}}\int_{0}^{1}x^{\xi}\pars{1 - x}^{n}\,\dd x =
-\bracks{\xi^{1}}\bracks{\Gamma\pars{\xi + 1}\Gamma\pars{n + 1} \over \Gamma\pars{\xi + n + 2}}
\\[5mm] = &\
-n!\bracks{\xi^{1}}\bracks{%
\Gamma\pars{1} + \Gamma\, '\pars{1}\xi \over \Gamma\pars{n + 2} +
\Gamma\, '\pars{n + 2}\xi}
\\[5mm] = &\
-\,{1 \over n + 1}\bracks{\xi^{1}}\bracks{%
1 - \gamma\xi \over 1 + \Psi\pars{n + 2}\xi}
\\[5mm] = &\
-\,{1 \over n + 1}\bracks{\xi^{1}}\braces{\vphantom{\Large A}%
\pars{\vphantom{\large A}1 - \gamma\xi}\bracks{\vphantom{\large A}1 - \Psi\pars{n + 2}\xi}}
\\[5mm] = &\
-\,{1 \over n + 1}\bracks{-\gamma - \Psi\pars{n + 2}} =
-\,{1 \over n + 1}\pars{-H_{n + 1}} =
\\[5mm] = &\
{1 \over n + 1}\sum_{r = 0}^{n}{1 \over r + 1}
\implies \bbx{k = {1 \over n + 1}} \\ &
\end{align}
$\ds{\bracks{\xi^{m}}}$ is the
Coefficient Extraction Operator.
$\ds{\Gamma}$ is the
Gamma Function.
$\ds{\gamma}$
is the Euler-Mascheroni Constant.
$\ds{\Psi}$ is the
Digamma Function.
$\ds{H_{z}}$ is a
Harmonic Number.