Given four real numbers $a, b, c, d$ so that $1\leq a\leq b\leq c\leq d\leq 3$. Prove that $$a^{2}+ b^{2}+ c^{2}+ d^{2}\leq ab+ ac+ ad+ bc+ bd+ cd$$
My solution $$3a- d\geq 0$$ $$\begin{align}\Rightarrow d\left ( a+ b+ c \right )- d^{2}= d\left ( a+ b+ c- d \right ) & = d\left ( 3a- d \right )+ d\left ( \left ( b- a \right )+ \left ( c- a \right ) \right )\\ & \geq b\left ( b- a \right )+ c\left ( c- a \right ) \\ & \geq \left ( b- a \right )^{2}+ \left ( c- a \right )^{2} \\ & \geq \frac{1}{2}\left ( \left ( b- a \right )^{2}+ \left ( c- a \right )^{2}+ \left ( c- a \right )^{2} \right )\\ & \geq \frac{1}{2}\left ( \left ( b- a \right )^{2}+ \left ( c- b \right )^{2}+ \left ( c- a \right )^{2} \right )\\ & = a^{2}+ b^{2}+ c^{2}- ab- bc- ca \end{align}$$ How about you ?