Evaluate$\int_{1}^{\infty}$ $\frac{1-(x-[x])}{x^{2-\sigma}}$dx where [x] denotes greatest integer function and $0<\sigma<1$.
My try:- 1-(x-[x])$\leq 1 \Rightarrow$ $\int_{1}^{\infty}$ $\frac{1-(x-[x])}{x^{2-\sigma}}$dx $\leq$ $\int_{1}^{\infty}$ $\frac {1}{x^{2-\sigma}}$dx= $\frac{1}{1-\sigma}$
$\int_{1}^{\infty}$ $\frac{1-(x-[x])}{x^{2-\sigma}}$dx= $\int_{1}^{2}$ $\frac{1-(x-1)}{x^{2-\sigma}}$dx+$\int_{2}^{3}$ $\frac{1-(x-2)}{x^{2-\sigma}}$dx+... But on integration I am not getting a finite value.