20

How to tackle

$$I=\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx\ ?$$

This integral came up while I was working on finding $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$.

First attempt: By writing $\text{Li}_2(x^2)=-\int_0^1\frac{x^2\ln(y)}{1-x^2y}dy$ we have

$$I=-\int_0^1\ln(y)\left(\int_0^1\frac{x\arcsin^2(x)}{1-x^2y}dx\right)dy$$

and Mathematica gave a complicated expression for the inner integral and that made me stop.

Second attempt: $x=\sin\theta$

$$I=\int_0^{\pi/2}\theta^2\cot\theta\ \text{Li}_2(\sin^2\theta)d\theta$$

$$=\sum_{n=1}^\infty\frac{1}{n^2}\int_0^{\pi/2}\theta^2\cot\theta \sin^{2n}(\theta) d\theta$$

and I have no idea how to continue. Any suggestion?

Thanks


How $I$ appeared in my calculations:

Since

$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$

we can write

$$\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}=\sum_{n=1}^\infty\frac{2^{2n}x^{n}}{n{2n\choose n}}$$

Divide both sides by $x$ then $\int_0^y$ we have

$$\sum_{n=1}^\infty\frac{2^{2n}y^n}{n^2{2n\choose n}}=2\int_0^y \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

Next multiply both sides by $\frac{\text{Li}_2(y)}{y}$ then $\sum_{n=1}^\infty$ and use that $\int_0^1 y^{n-1}\text{Li}_2(y)dy=\frac{\zeta(2)}{n}-\frac{H_n}{n^2}$ we get

$$\sum_{n=1}^\infty\frac{\zeta(2)2^{2n}}{n^3{2n\choose n}}-\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^4{2n\choose n}}=2\int_0^1\int_0^y \frac{\arcsin \sqrt{x}\text{Li}_2(y)}{y\sqrt{x}\sqrt{1-x}}dxdy$$

$$=2\int_0^1 \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{\text{Li}_2(y)}{y}dy\right)dx$$ $$=2\int_0^1 \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\zeta(3)-\text{Li}_3(x)\right)dx$$

$$\overset{\sqrt{x}\to x}{=}4\int_0^1\frac{\arcsin x}{\sqrt{1-x^2}}(\zeta(3)-\text{Li}_3(x^2))dx$$

$$\overset{\text{IBP}}{=}4\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$$

Substitute $\sum_{n=1}^\infty\frac{\zeta(2)2^{2n}}{n^3{2n\choose n}}=15\ln(2)\zeta(4)-\frac72\zeta(2)\zeta(3)$ we get

$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^4{2n\choose n}}=15\ln(2)\zeta(4)-\frac72\zeta(2)\zeta(3)-4\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$$

Jorge Layja
  • 4,692
Ali Olaikhan
  • 27,891
  • I'm not at home so I can't do the math right now, but would the formula $\operatorname{Li}_2(z^2) = 2\operatorname{Li}_2(-z)+2\operatorname{Li}_2(z)$ maybe help? – Casimir Rönnlöf Aug 18 '20 at 10:05
  • 7
    The result is $$I = -4 \text{Li}_5\left(\frac{1}{2}\right)-\frac{13 \pi ^2 \zeta (3)}{48}+\frac{31 \zeta (5)}{8}+\frac{\log ^5(2)}{30}-\frac{2}{9} \pi ^2 \log ^3(2)+\frac{13}{360} \pi ^4 \log (2)$$ – pisco Aug 18 '20 at 11:26
  • @AliShather Yes. But I am afraid you are less interested in my approach. – pisco Aug 18 '20 at 11:44
  • 1
    His approach is completely outlined in the link I offered yesterday. It will be better if one read and comprehend it before asking similar questions. – Infiniticism Aug 18 '20 at 12:53
  • 2
    @AliShather That's also good. But it seems common that power of elementary techniques is often limited compared to more advanced ones, which are also artistic and elegant (from a higher point of view). – Infiniticism Aug 18 '20 at 13:20
  • 1
    @AliShather With hard work and insistance on comprehending more advanced theories , one may push limitations much further. – Infiniticism Aug 18 '20 at 13:27
  • 9
    @AliShather When solving math problems, there is often a compromise between elegance and generality. Your questions/answers on this site indicate you prefer elegant approaches. However, magical tricks often do not work for every problem. My approach (given in link above) is algorithmic and tedious, but it has great generality: can solve ~95% of your past questions with a single, unchanging method. It is just a matter of taste, whether one prefers a miraculous method with limited applicability, or a mechanical way with great generality. – pisco Aug 18 '20 at 13:33
  • @AliShather I don't know how to proceed now, but using the formula one gets that $I = 4\int_0^1 \frac{\operatorname{Li}_2(x)\arcsin^2(x)}{x}$ – Casimir Rönnlöf Aug 18 '20 at 18:34

2 Answers2

14

A different path.

Since $$\int _0^1\frac{\arcsin ^2\left(x\right)\operatorname{Li}_2\left(x^2\right)}{x}\:dx=\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)\:dx,$$ we may use that $$\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)$$ $$=\zeta \left(2\right)-2\ln ^2\left(2\right)+4\sum _{k=1}^{\infty }\left(-1\right)^k\left(\int _0^1t^{k-1}\ln \left(\frac{1+t}{2\sqrt{t}}\right)\:dt\right)\cos \left(2kx\right),\quad x\in \mathbb{R},$$ which is derived in More (Almost) Impossible Integrals, Sums, and Series: A New Collection of Fiendish Problems and Surprising Solutions (2023), pages $742$$748$. This means that if we employ this to our integral, we obtain $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)\:dx=\left(\zeta \left(2\right)-2\ln ^2\left(2\right)\right)\underbrace{\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\:dx}_{-\frac{7}{8}\zeta \left(3\right)+\frac{3}{2}\ln \left(2\right)\zeta \left(2\right)}$$ $$+4\sum _{k=1}^{\infty }\left(-1\right)^k\left(\int _0^1t^{k-1}\ln \left(\frac{1+t}{2\sqrt{t}}\right)\:dt\right)\underbrace{\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\cos \left(2kx\right)\:dx}_{I_k}\tag{1}.$$ Moreover, by considering the difference $I_{n+1}-I_n$, we can prove in a straightforward but laborious manner that $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\cos \left(2kx\right)\:dx=\frac{1}{2}H_k^{\left(3\right)}+\frac{1}{2}\overline{H}_k^{\left(3\right)}-\frac{3}{2}\zeta \left(2\right)\overline{H}_k-\frac{1}{4}\frac{1}{k^3}-\frac{1}{4}\frac{\left(-1\right)^{k+1}}{k^3}$$ $$+\frac{3}{4}\zeta \left(2\right)\frac{\left(-1\right)^{k+1}}{k}-\frac{7}{8}\zeta \left(3\right)+\frac{3}{2}\ln \left(2\right)\zeta \left(2\right),\quad k\in \mathbb{N}.\tag{2}$$ Thus, if we replace $\left(2\right)$ in $\left(1\right)$ and reduce the resulting expressions, we arrive at $$\int _0^1\frac{\arcsin ^2\left(x\right)\operatorname{Li}_2\left(x^2\right)}{x}\:dx=\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)\:dx$$ $$=\int _0^1\frac{\ln \left(\frac{1+t}{2\sqrt{t}}\right)\operatorname{Li}_3\left(-t\right)}{t}\:dt-\int _0^1\frac{\ln \left(\frac{1+t}{2\sqrt{t}}\right)\operatorname{Li}_3\left(t\right)}{t}\:dt-2\int _0^1\frac{\ln \left(\frac{1+t}{2\sqrt{t}}\right)\operatorname{Li}_3\left(-t\right)}{1+t}\:dt$$ $$+2\int _0^1\frac{\ln \left(\frac{1+t}{2\sqrt{t}}\right)\operatorname{Li}_3\left(t\right)}{1+t}\:dt-3\zeta \left(2\right)\int _0^1\frac{\ln \left(1-t\right)\ln \left(\frac{1+t}{2\sqrt{t}}\right)}{t}\:dt$$ $$+6\zeta \left(2\right)\int _0^1\frac{\ln \left(1-t\right)\ln \left(\frac{1+t}{2\sqrt{t}}\right)}{1+t}\:dt.$$ Now, we can observe that many known integrals arose, which may allow us to complete the calculations.

As an additional note, it is better to keep the integral inside the Fourier series from the beginning as this allows us for better manipulations.


A second straightforward path.

We have $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)\:dx=\frac{3}{4}\zeta \left(2\right)\zeta \left(3\right)-\int _0^{\frac{\pi }{2}}x\operatorname{Li}_3\left(\sin ^2\left(x\right)\right)\:dx,$$ and if we have at our disposal the more advanced Fourier series $$\operatorname{Li}_3\left(\sin ^2\left(x\right)\right)$$ $$\small=2\zeta \left(3\right)-2\ln \left(2\right)\zeta \left(2\right)+\frac{4}{3}\ln ^3\left(2\right)+4\sum _{k=1}^{\infty }\left(-1\right)^k\left(\int _0^1t^{k-1}\ln ^2\left(\frac{1+t}{2\sqrt{t}}\right)\:dt\right)\cos \left(2kx\right),\quad x\in \mathbb{R},$$ derived in the same book, pages $748$$750$, we would obtain $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\operatorname{Li}_2\left(\sin ^2\left(x\right)\right)\:dx$$ $$=\frac{3}{4}\zeta \left(2\right)\zeta \left(3\right)-\left(2\zeta \left(3\right)-2\ln \left(2\right)\zeta \left(2\right)+\frac{4}{3}\ln ^3\left(2\right)\right)\int _0^{\frac{\pi }{2}}x\:dx$$ $$-4\sum _{k=1}^{\infty }\left(-1\right)^k\left(\int _0^1t^{k-1}\ln ^2\left(\frac{1+t}{2\sqrt{t}}\right)\:dt\right)\int _0^{\frac{\pi }{2}}x\cos \left(2kx\right)\:dx$$ $$=-\frac{3}{4}\zeta \left(2\right)\zeta \left(3\right)+\frac{15}{4}\ln \left(2\right)\zeta \left(4\right)-\ln ^3\left(2\right)\zeta \left(2\right)-\int _0^1\frac{\ln ^2\left(\frac{1+t}{2\sqrt{t}}\right)\left(\operatorname{Li}_2\left(t\right)-\operatorname{Li}_2\left(-t\right)\right)}{t}\:dt.$$ Here, we encounter known integrals once again.

Jorge Layja
  • 4,692
  • 1
    (+1) Nice work! I just noticed the second part of your latest post, and then I deleted my post. I think in the context of the use of results from the referenced book, using Fourier series of $\operatorname{Li}_3(\sin^2(x))$ is the way to go (for example, because of Sections 1.46-1.47, pages 57-60). :-) – user97357329 Mar 30 '25 at 07:23
  • 1
    Okay, nobody will beat this post (ever) - just a guess. "Let the bounty come!" :-) – user97357329 Mar 30 '25 at 07:26
  • 1
    @user97357329 Thank you so much! Yes, the use of $\operatorname{Li}_3\left(\sin ^2\left(x\right)\right)$ is a lot better in this case. There's still so much to explore with these amazing Fourier series. – Jorge Layja Mar 30 '25 at 07:57
13

Update: The approach below can be found as part of this paper.

Here is an approach for:

$$\sum _{k=1}^{\infty }\frac{4^kH_k}{k^4\binom{2k}{k}}=-\frac{31}{2}\zeta \left(5\right)+3\zeta \left(2\right)\zeta \left(3\right)+16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$+2\ln \left(2\right)\zeta \left(4\right)+\frac{16}{3}\ln ^3\left(2\right)\zeta \left(2\right)-\frac{2}{15}\ln ^5\left(2\right);$$ $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}=\frac{31}{4}\zeta \left(5\right)+\frac{3}{2}\zeta \left(2\right)\zeta \left(3\right)-16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$-2\ln \left(2\right)\zeta \left(4\right)+\frac{8}{3}\ln ^3\left(2\right)\zeta \left(2\right)+\frac{2}{15}\ln ^5\left(2\right).$$

Note that $$\arcsin ^4\left(x\right)=\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^2\binom{2k}{k}}x^{2k}-\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^k}{k^4\binom{2k}{k}}x^{2k}$$ $$2\int _0^1\frac{\arcsin ^4\left(x\right)}{x}\:dx=\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}-\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^k}{k^5\binom{2k}{k}}.$$ Therefore $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}=-\frac{16}{3}\int _0^{\frac{\pi }{2}}x^3\ln \left(\sin \left(x\right)\right)\:dx-\frac{16}{3}\int _0^{\frac{\pi }{2}}x\ln ^3\left(\sin \left(x\right)\right)\:dx.$$ The first integral is easy to calculate due to the fourier series of $\ln \left(\sin \left(x\right)\right)$, while the other integral can be found calculated here. By using their closed forms, the previous announced result follows.

Now, let's find the other series. Consider the result also found in the previous link: $$\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx=-\frac{155}{128}\zeta \left(5\right)-\frac{1}{32}\zeta \left(2\right)\zeta \left(3\right)+\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$+\frac{49}{32}\ln \left(2\right)\zeta \left(4\right)-\frac{2}{3}\ln ^3\left(2\right)\zeta \left(2\right)-\frac{1}{120}\ln ^5\left(2\right),$$ and note that $$\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx=\frac{1}{2}\int _0^1\frac{\ln ^2\left(x\right)\ln \left(1-x^2\right)\arcsin \left(x\right)}{\sqrt{1-x^2}}\:dx$$ $$=\frac{1}{32}\sum _{k=1}^{\infty }\frac{4^k}{k\binom{2k}{k}}\int _0^1x^{k-1}\ln ^2\left(x\right)\ln \left(1-x\right)\:dx,$$ which means that $$\sum _{k=1}^{\infty }\frac{4^kH_k}{k^4\binom{2k}{k}}=-16\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx-\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}-\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(3\right)}}{k^2\binom{2k}{k}}$$ $$+\zeta \left(2\right)\sum _{k=1}^{\infty }\frac{4^k}{k^3\binom{2k}{k}}+\zeta \left(3\right)\sum _{k=1}^{\infty }\frac{4^k}{k^2\binom{2k}{k}}.$$ The last $2$ series are well-known while the other harmonic series can be found evaluated in large steps here: $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(3\right)}}{k^2\binom{2k}{k}}=\frac{217}{8}\zeta \left(5\right)-\frac{9}{2}\zeta \left(2\right)\zeta \left(3\right)-16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$-\frac{19}{2}\ln \left(2\right)\zeta \left(4\right)+\frac{8}{3}\ln ^3\left(2\right)\zeta \left(2\right)+\frac{2}{15}\ln ^5\left(2\right).$$ By using these results, the closed form mentioned in the beginning also follows.

And that's all there is to it.

Jorge Layja
  • 4,692