31

For $n=2$, consider the free abelian group generated by polynomials corresponding to $\frac{(2 n)!}{2^n n!}=3$ partitions of $2n=4$ vertices into pairs (chords): $$ (x_1-x_3)(x_2-x_4),(x_1-x_2)(x_3-x_4),(x_1-x_4)(x_2-x_3) $$ Euler's Identity: $ (x_1-x_3)(x_2-x_4)=(x_1-x_2)(x_3-x_4)+(x_1-x_4)(x_2-x_3)$. enter image description here

So$$\{(x_1-x_2)(x_3-x_4),(x_1-x_4)(x_2-x_3)\}\tag1\label2$$ is a basis.

So the rank of the free abelian group is $2$.


For $n=3$, consider the free abelian group generated by polynomials corresponding to $\frac{(2 n)!}{2^n n!}=15$ partitions of $2n=6$ vertices into pairs (chords): \begin{array}r \{(x_1-x_2) (x_3-x_4) (x_5-x_6),\\(x_1-x_2) (x_3-x_5) (x_4-x_6),\\(x_1-x_2) (x_4-x_5) (x_3-x_6),\\(x_1-x_3) (x_2-x_4) (x_5-x_6),\\(x_1-x_3) (x_2-x_5) (x_4-x_6),\\(x_1-x_3) (x_4-x_5) (x_2-x_6),\\(x_2-x_3) (x_1-x_4) (x_5-x_6),\\(x_1-x_4) (x_2-x_5) (x_3-x_6),\\(x_1-x_4) (x_3-x_5) (x_2-x_6),\\(x_2-x_3) (x_1-x_5) (x_4-x_6),\\(x_2-x_4) (x_1-x_5) (x_3-x_6),\\(x_3-x_4) (x_1-x_5) (x_2-x_6),\\(x_2-x_3) (x_4-x_5) (x_1-x_6),\\(x_2-x_4) (x_3-x_5) (x_1-x_6),\\(x_3-x_4) (x_2-x_5) (x_1-x_6)\} \end{array} Using Euler's Identity we can decompose the product of intersecting chords into the sum of products of the non-intersecting chords. For example $(x_1-x_4)(x_2-x_5)(x_3-x_6)$ as in Fuhrmann's Theorem, enter image description here There are 5 partitions of 6 vertices into non-intersecting chords $$\tag2\label1\begin{array}l\{(x_1-x_6)(x_2-x_5)(x_3-x_4),\\ (x_1-x_6)(x_2-x_3)(x_4-x_5),\\ (x_1-x_4)(x_2-x_3)(x_5-x_6),\\(x_1-x_2)(x_3-x_6)(x_4-x_5),\\(x_1-x_2)(x_3-x_4)(x_5-x_6)\}\end{array}$$ Under lexicographic order, the leading terms of \eqref{1} are distinct: $\{x_1x_2x_3,x_1x_2x_4,x_1x_2x_5,x_1x_3x_4,x_1x_3x_5\}$. Suppose $c_1(x_1-x_6)(x_2-x_5)(x_3-x_4)+\dots+c_5(x_1-x_2)(x_3-x_4)(x_5-x_6)=0$ for some $c_1,\dots,c_5\in\mathbb{Z}$. Comparing coefficients of term $x_1x_2x_3$ to get $c_1=0$, comparing coefficients of term $x_1x_2x_4$ to get $c_2=0$, comparing coefficients of term $x_1x_2x_5$ to get $c_3=0$, comparing coefficients of term $x_1x_3x_4$ to get $c_4=0$, comparing coefficients of term $x_1x_3x_5$ to get $c_5=0$, so $c_1=\dots=c_5=0$, \eqref{1} is linearly independent. So the rank of the free abelian group is 5.


Here is a proof that the number of non-intersecting chords is Catalan number $\frac1{n+1}\binom{2n}n$.

Each polynomial in \eqref{1} can be written as a $2×n$ "non-intersecting tableaux" $$ \Biggl\{\begin{array}{|c|c|}\hline1&2&3\\\hline6&5&4\\\hline\end{array}, \begin{array}{|c|c|}\hline1&2&4\\\hline6&3&5\\\hline\end{array}, \begin{array}{|c|c|}\hline1&2&5\\\hline4&3&6\\\hline\end{array}, \begin{array}{|c|c|}\hline1&3&4\\\hline2&6&5\\\hline\end{array}, \begin{array}{|c|c|}\hline1&3&5\\\hline2&4&6\\\hline\end{array}\Biggr\} $$ To show that a "non-intersecting tableux" is determined by its first row, we give a procedure to fill in the second row. For example $\begin{array}{|c|c|}\hline1&2&5&7\\\hline?&?&?&?\\\hline\end{array}$ to fill $3,4,6,8$ in the second row such that there are no intersecting chords, we must put $3$ under the largest number less than $3:\begin{array}{|c|c|}\hline1&2&5&7\\\hline?&3&?&?\\\hline\end{array}$ then we must put $4$ under the largest remaining number less than $4:\begin{array}{|c|c|}\hline1&2&5&7\\\hline4&3&?&?\\\hline\end{array}$, then we must put $6$ under the largest remaining number less than $6:\begin{array}{|c|c|}\hline1&2&5&7\\\hline4&3&6&?\\\hline\end{array}$, then we must put $8$ under the largest remaining number less than $8:\begin{array}{|c|c|}\hline1&2&5&7\\\hline4&3&6&8\\\hline\end{array}$

For all $n$ we have shown the first rows of $\frac1{n+1}\binom{2n}n$ number of "non-intersecting tableaux" are distinct.

Under lexicographic order, the leading terms of \eqref{1} correspond to the first row of tableaux, so the leading terms are distinct, so the set of polynomials corresponding to "non-intersecting tableux" are linearly independent for all $n$.

So we have proved:

For all $n$, the rank of the above free abelian group in $2n$ variables is $\frac1{n+1}\binom{2n}n$.


For $n=4$, similarly decompose the product of intersecting chords into the sum of products of the non-intersecting chords. For example $(x_1-x_5)(x_2-x_6)(x_3-x_7)(x_4-x_8)$ enter image description here

enter image description here As you can see, there will be two identical pairs in the end, so after collecting terms there will be two terms with coefficient $2$ \begin{align} (x_1 - x_5)(x_2 - x_6)(x_3 - x_7)(x_4 - x_8)\\ = (x_1 - x_4)(x_2 - x_3)(x_5 - x_8)(x_6 - x_7)\\ + \color{red}{2}(x_1 - x_8)(x_2 - x_3)(x_4 - x_5)(x_6 - x_7)\\ + (x_1 - x_2)(x_3 - x_8)(x_4 - x_7)(x_5 - x_6)\\ + (x_1 - x_2)(x_3 - x_8)(x_4 - x_5)(x_6 - x_7)\\ + \color{red}{2}(x_1 - x_2)(x_3 - x_4)(x_5 - x_6)(x_7 - x_8)\\ + (x_1 - x_2)(x_3 - x_4)(x_5 - x_8)(x_6 - x_7)\\ + (x_1 - x_4)(x_2 - x_3)(x_5 - x_6)(x_7 - x_8)\\ + (x_1 - x_8)(x_2 - x_3)(x_4 - x_7)(x_5 - x_6)\\ + (x_1 - x_2)(x_3 - x_6)(x_4 - x_5)(x_7 - x_8)\\ + (x_1 - x_8)(x_2 - x_7)(x_3 - x_4)(x_5 - x_6)\\ + (x_1 - x_8)(x_2 - x_7)(x_3 - x_6)(x_4 - x_5)\\ + (x_1 - x_8)(x_2 - x_5)(x_3 - x_4)(x_6 - x_7)\\ + (x_1 - x_6)(x_2 - x_3)(x_4 - x_5)(x_7 - x_8)\\ + (x_1 - x_6)(x_2 - x_5)(x_3 - x_4)(x_7 - x_8)\end{align}

Conjecture. Express $(x_1-x_{n+1})(x_2-x_{n+2})\dots(x_n-x_{2n})$ as a linear combination of polynomials corresponding to the non-intersecting chords, then the term $(x_1-x_2)(x_3-x_4)\cdots(x_{2n-1}-x_{2n})$ and the term $(x_{2n}-x_1)(x_2-x_3)\cdots(x_{2n-2}-x_{2n-1})$ have largest coefficient in absolute value.

Mathematica code to compute the largest coefficients in absolute value

Needs["Combinatorica`"];
coeff[n_]:=Max[Abs[PolynomialReduce[Product[Indexed[x,i]-Indexed[x,n+i],{i,n}],Table[Module[{t1=t[[1]],t2=t[[2]],poly=1,i=1},Do[i=1;While[Length[t1]>i&&t1[[i+1]]<t2[[1]],i++];poly*=Indexed[x,t1[[i]]]-Indexed[x,t2[[1]]];t1=Delete[t1,i];t2=Rest[t2],n];poly],{t,Tableaux[Table[n,2]]}],Table[Indexed[x,i],{i,2n}]][[1]]]]

the terms $n=2,\dots,9$ in the sequence agree with A099960: \begin{array}{c|c} n&2&3&4&5&6&7&8&9\\\hline \text{largest abs coefficient}&1&1&2&3&8&17&56&155 \end{array}

hbghlyj
  • 5,361
  • The expansion of $(1-8x+21x^2-20x^3+5x^4)/(1-9x+28x^2-35x^3+15x^4-x^5)$ also produces $1,1,2,5,14,42$ as Catalan, but then $132,429$, which is not Catalan. Also $binomial(fibonacci(k) + 1, 2)$ produces $1,1,2,5,14,42,132$ and so on. – Dietrich Burde Aug 16 '20 at 11:42
  • @DietrichBurde The first example you gave only starts failing at the $x^{10}$ term. $132$ and $429$, as well as the two terms that follow $1430$ and $4862$, are Catalan numbers. The second example evaluates to $3$ when $k=3$. Though I do get your point that it's best not to be too confident about integer sequences when you only know the first few terms. – Elliot Yu Aug 16 '20 at 14:27

0 Answers0