Find the last $2$ digits of $9^{100}$.
Well, I know that $9^{100}$ mod $4$ is $1$,but I do not know how to find $9^{100}$ mod $25$ hence I do not know how to find $9^{100}$ mod $100$.
Thanks for any help.
Find the last $2$ digits of $9^{100}$.
Well, I know that $9^{100}$ mod $4$ is $1$,but I do not know how to find $9^{100}$ mod $25$ hence I do not know how to find $9^{100}$ mod $100$.
Thanks for any help.
Hint:observe that $9^{100}={(10-1)}^{100}$
using binomial theorem this can be written in the form of $100k+1$
Calculate $9^{100}$ mod $25$.
Using the 'brute-force' mod $25$ technique (no calculator necessary),
$\quad 9^{100} = \bigr(\big({(9^2)}^2\big)^5\bigr)^5 \equiv \bigr(\big({6}^2\big)^5\bigr)^5 \equiv {(11^5)}^5 = {\bigr((11)^2(11)^2(11)\bigr)}^5 \equiv {\bigr((-4)(-4)(11)\bigr)}^5 =$
$\quad \quad {\bigr((16)(11)\bigr)}^5 = {176}^5 \equiv 1^5 \equiv 1$ mod $25$