Let $\mu_{k}(n)$ be the MÖBIUS function of order $k$, defined by $$ \mu_{k}(n)= \begin{cases} 1 &\text{if }\: n=1,\\ 0 &\text{if }\: p^{k+1}\mid n, \\ (-1)^r & \text{if }\: n = p^k_1· · · p^k_r\prod_{i>r} p_i^{α_i}, \quad0<\alpha_i<k, \\ 1 & \text{otherwise}. \end{cases} $$
Under this definition, what could be this $$\sum_{n\leq x}\mu_k(n)^2\:?$$ Any small hint is welcome!