Written in terms of matrices, the recurrence is given by
$$\begin{bmatrix}f(n+1)\\f(n+2)\\f(n+3)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}\begin{bmatrix}f(n)\\f(n+1)\\f(n+2)\end{bmatrix}$$
and may be solved as
$$\begin{bmatrix}f(n-1)\\f(n)\\f(n+1)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}f(-1)\\f(0)\\f(1)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\begin{bmatrix}f(n-2)\\f(n-1)\\f(n)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}f(-2)\\f(-1)\\f(0)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}1\\0\\0\end{bmatrix}$$
$$\begin{bmatrix}f(n-3)\\f(n-2)\\f(n-1)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}f(-3)\\f(-2)\\f(-1)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\begin{bmatrix}0\\1\\0\end{bmatrix}$$
Put together, these give us the total result
$$\begin{bmatrix}f(n-2)&f(n-3)&f(n-1)\\f(n-1)&f(n-2)&f(n)\\f(n)&f(n-1)&f(n+1)\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^n\tag1$$
Note: At this point, any of these formulas may be used to compute $f(n)$ in $\mathcal O(\log(n))$ steps by using exponentiation by squaring to compute the matrix.
Continuing on to derive relations:
By squaring $(1)$, we may see that
\begin{align}&\begin{bmatrix}f(2n-2)&f(2n-3)&f(2n-1)\\f(2n-1)&f(2n-2)&f(2n)\\f(2n)&f(2n-1)&f(2n+1)\end{bmatrix}\\&=\begin{bmatrix}0&1&0\\0&0&1\\1&0&1\end{bmatrix}^{2n}\\&=\begin{bmatrix}f(n-2)&f(n-3)&f(n-1)\\f(n-1)&f(n-2)&f(n)\\
f(n)&f(n-1)&f(n+1)\end{bmatrix}^2\\&=\begin{bmatrix}f_{-2,-2}+f_{-1,-3}+f_{-1,0}&2f_{-2,-3}+f_{-1,-1}&f_{-2,-1}+f_{-3,0}+f_{-1,+1}\\2f_{-2,-1}+f_{0,0}&f_{-3,-1}+f_{-1,-1}+f_{-1,0}&f_{-1,-1}+f_{-2,0}+f_{0,+1}\\f_{-2,0}+f_{-1,-1}+f_{0,+1}&f_{-3,0}+f_{-2,-1}+f_{-1,+1}&2f_{-1,0}+f_{+1,+1}\end{bmatrix}\end{align}
where $f_{a,b}$ is shorthand for $f(n+a)f(n+b)$.
This may be further combined with the original recurrence to rewrite $f(n-2)$ and $f(n-3)$ as
$$f(n-2)=f(n+1)-f(n)$$
$$f(n-3)=f(n)-f(n-1)$$
and likewise for $f(2n-2)$ and $f(n-3)$. This gives identities relating $f(2n)$ and $f(2n\pm1)$ to $f(n)$ and $f(n\pm1)$, which will also allow evaluation in $\mathcal O(\log(n))$ steps.