Evaluate $$\int_0^1 \frac{\ln{\left(ax^2+2bx+a\right)}}{x^2+1} \; \mathrm{d}x, \;a>b>0$$
I tried- $$=\frac{\pi \ln{a}}{4}+\int_0^1 \frac{\ln{\left(x^2+2tx+1\right)}}{x^2+1} \; \mathrm{d}x$$ Where $t=\frac{b}{a}$ $$=\frac{\pi \ln{a}}{4}+\int_0^1 \frac{\ln{\left({\left(x+t\right)}^2+c\right)}}{x^2+1} \; \mathrm{d}x$$ Where $c=1-t^2$. I dont think this helps much. I also tried analyzing things like $x \to \frac{1}{x}$ in the integral in the second line $$I=\int_0^1 \frac{\ln{\left(x^2+2tx+1\right)}}{x^2+1} \; \mathrm{d}x=\int_1^{\infty} \frac{\ln{\left(x^2+2tx+1\right)}}{x^2+1} \; \mathrm{d}x - 2C$$ $$2I=\int_0^{\infty} \frac{\ln{\left(x^2+2tx+1\right)}}{x^2+1} \; \mathrm{d}x - 2C$$ C is catalans constant. Does this help? Any ideas. (I sense complex analysis is the best here