1

I have an $(kn \times kn)$ dimensional square positive semi-definite symmetric matrix of the form:

$$A=\begin{bmatrix}A_{11} & A_{21} & ... & A_{n1} \\ A_{21}' & A_{22} & ... & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1}' & A_{n2}' & ... & A_{nn} \\ \end{bmatrix}$$

Where the blocks, $\{A_{ij}\}_{i, j\in \{1,...n\}}$, are square and of dimension $(k \times k)$. Denote the inverse of $A$ as $B$, so that $B^{-1}=A$ and partition $B$ as:

$$B=\begin{bmatrix}B_{11} & B_{21} & ... & B_{n1} \\ B_{21}' & B_{22} & ... & B_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1}' & B_{n2}' & ... & B_{nn} \\ \end{bmatrix}$$

Where the blocks, $\{B_{ij}\}_{i, j\in \{1,...n\}}$, are also square and of dimension $(k \times k)$. I want to find the sum of the diagonal blocks of $B$ in terms of the original blocks of $A$. That is, I want to find:

$$\sum_{i=1}^n B_{ii}$$

In terms of the $\{A_{ij}\}_{i,j \in \{1,...,n\}}$. Does anyone know of any nice formulae for this?

JDoe2
  • 825

1 Answers1

0

For $k=1$ , As, $B=A^{-1}$, by the rule of trace of matrix, $\sum_{i=1}^n B_{ii} = \text{sum of all reciprocals of all eigenvalues of A} = (-1)^{n-1} \frac{\text{sum of all minors of A of order (n-1)}}{|A|} $

A learner
  • 2,871