In "3264 & All ThatIntersection Theory in Algebraic Geometry" by Eisenbud & Harris, we have the following :
Let $ A^{1}(X) $ denote the Picard group of a variety $ X. $
Let $ S $ be a smooth projective surface and $ \pi: \widetilde{S} \rightarrow S $ the blow-up of $ S $ at a point $ p$; let $ e \in A^{1}(\widetilde{S}) $ be the class of the exceptional divisor
$ A(\widetilde{S}) = A(S) \oplus \mathbb{Z}e $ as abelian groups
$ \pi^{*}\alpha \cdot \pi^{\beta} = \pi^{*}(\alpha\beta) $ for any $ \alpha,\beta \in A^{1}(S). $
$ e \cdot \pi^{*}\alpha = 0 $ for any $ \alpha \in A^{1}(S). $
$ e^{2} = -[q] $ for any point $ q \in E $(in particular, $ \operatorname{deg}(e^{2}) = -1 $).
A generalisation of (4) is the fact that in some sense $ E|_{E} = E^{2} = -H $ in $ E, $ and I would appreciate some insight as to why this is.