\begin{aligned}
&\int\limits_0^\infty \frac{x^k}{(1 + x)^{n + 2}} \, dx = \frac{1}{\Gamma(n + 2)} \int\limits_0^\infty x^k \frac{\Gamma(n + 2)}{(1 + x)^{n + 2}} \, dx \\
&= \frac{1}{\Gamma(n + 2)} \int\limits_0^\infty x^k \int\limits_0^\infty y^{n + 1} e^{-(1 + x)y} \, dy \, dx \\
&= \frac{1}{(n + 1)!} \int\limits_0^\infty y^{n + 1} e^{-y} \int\limits_0^\infty x^k e^{-xy} \, dx \, dy \\
&= \frac{1}{(n + 1)!} \int\limits_0^\infty y^{n + 1} e^{-y} \frac{\Gamma(k + 1)}{y^{k + 1}} \, dy \\
&= \frac{k!}{(n + 1)!} \int\limits_0^\infty y^{n - k} e^{-y} \, dy \\
&= \frac{k!}{(n + 1) \cdot n!} \Gamma(n - k + 1) \\
&= \frac{k!(n - k)!}{(n + 1) \cdot n!} \\
&\Rightarrow \boxed{\frac{1}{\binom{n}{k}} = (n + 1) \cdot \int\limits_0^\infty \frac{x^k}{(1 + x)^{n + 2}} \, dx}
\end{aligned}
Then
\begin{aligned}
S &= \sum_{r = 1}^{2n - 1} \frac{(-1)^{r - 1}r}{\binom{2n}{r}} \\
&= (2n + 1) \sum_{r = 1}^{2n - 1} (-1)^{r - 1}r \int\limits_0^\infty \frac{x^r}{(1 + x)^{2n + 2}} \, dx \\
&= (2n + 1) \int\limits_0^\infty \frac{1}{(1 + x)^{2n + 2}} \left(\sum_{r = 1}^{2n - 1} r(-1)^{r - 1}x^r\right) \, dx
\end{aligned}
But
\begin{aligned}
\sum_{r = 1}^{2n - 1} r(-1)^{r - 1}x^r &= -x \sum_{r = 1}^{2n - 1} (-1)^rx^{r'} \\
&= -x\left(\sum_{r = 1}^{2n - 1} (-x)^r\right)' \\
&= -x\left(\left(-x \cdot \frac{1 - (-x)^{2n - 1}}{1 - (-x)}\right)'\right) \\
&= x \cdot \left(x \cdot \frac{1 + x^{2n - 1}}{1 + x}\right)'
\end{aligned}
Finally
\begin{aligned}
S &= (2n + 1) \int\limits_0^\infty \frac{x}{(1 + x)^{2n + 2}} \left(\left(x \cdot \frac{1 + x^{2n - 1}}{1 + x}\right)'\right) \, dx \\
&= \frac{n}{n + 1}
\end{aligned}
The calculations are easy but require a lot of operations. The relationship was used $$\boxed{\int\limits_0^\infty x^a e^{-bx} \, dx = \frac{\Gamma(a + 1)}{b^{a + 1}}}.$$