I am looking for a mathematical function with growth controlled by a parameter. It would have two inputs:
- A growth scale, further called $w$
- An input ranging from $0$ to $1$, further called $x$
The function $f(x, w)$ should behave according to the following pattern.
If $w$ equals $2$, it would be a linear function (I think):
- if $x = \frac{1}{2}$, then $f(x,w)$ should be $\frac{1}{2}$
- if $x = 1$, then $f(x, w)$ should be $\frac{2}{2}$
If $w$ equals $3$, the growth increases:
- If $x = \frac{1}{2}$, $f(x, w)$ should be $\frac{1}{3}$
- If $x = \frac{3}{4}$ (or $\frac{1}{2} + \frac{1}{2} * \frac{1}{2}$), $f(x, w)$ should be $\frac{2}{3}$
- If $x = 1$, $f(x, w)$ should be $\frac{3}{3}$
If $w$ equals $4$, the growth increases further:
- If $x = \frac{1}{2}$, $f(x, w)$ should be $\frac{1}{4}$
- If $x = \frac{3}{4}$, $f(x, w)$ should be $\frac{2}{4}$
- If $x = \frac{7}{8}$, $f(x, w)$ should be $\frac{3}{4}$
- If $x = 1$, $f(x, w)$ should be $\frac{4}{4}$
This behaviour should continue infinitely as $w$ increases. How would the function for this behaviour look like?
