Herein assume $n > 1$, so that the integral converges. Define
$$J_n(m) := \int_0^\infty \frac{dx}{(1 + x^n)^m},$$
so that
our integral is $I_n = -J_n'(0)$. Substituting $x = \tan^{\frac 2n} \theta$
transforms the integral to
$$J_n(m) = \frac2n \int_0^{\frac\pi2} \sin^{\frac{2 - n}n} \theta \cos^{\frac{(2 m - 1) n - 2}n} \theta \,d\theta = \frac1n \mathrm{B}\left(\frac1n, m - \frac1n\right) = n \frac{\Gamma\left(\frac1n\right) \Gamma(m - \frac1n)}{\Gamma(m)} ,$$
where $\mathrm B$ and $\Gamma$ respectively denote the beta and gamma functions.
Now, differentiating with respect to $m$ and setting $m = 1$ recovers
$$I_n = -J_n'(1) = -\frac1n \Gamma\left(\frac1n\right) \Gamma\left(1 - \frac1n\right) \left(\gamma + \psi\left(1 - \frac1n\right)\right) ,$$
where $\psi$ denotes the digamma function, i.e., $\psi := (\log \Gamma)'$.
Invoking Euler's Reflection Formula ($\Gamma(x) \Gamma(1 - x) = \pi \csc \pi x$) and the writing the digamma function in terms of the harmonic numbers $H_s$ (generalized to real index $s$) as $\psi(x) = H_{x - 1} - \gamma$ gives
$$\boxed{\int_0^\infty \frac{\log(1 + x^n) \,dx}{1 + x^n} = -\frac{\pi}{n} H_{-\frac1n} \csc \frac\pi n}.$$
The special case $n = 2$ gives the well-known value $I_2 = \pi \log 2$, which can also be derived by other means.
Expanding in a series as $n \searrow 1$ gives
$$\int_0^\infty \frac{\log(1 + x^n) \,dx}{1 + x^n} \sim \frac{1}{(n - 1)^2} + \frac{1}{(n - 1)} + \zeta(3) (n - 1) + \cdots ,$$
where $\cdots$ denotes a remainder in $O((n - 1)^2)$, where $\zeta$ denotes the Riemann zeta function.
Expanding in a series as $n \to \infty$ gives
$$\int_0^\infty \frac{\log(1 + x^n) \,dx}{1 + x^n} \sim \frac{\zeta(2)}n + \frac{\zeta(3)}{n^2} + \frac{7 \zeta(4)}{2 n^3} + \cdots ,$$
where now $\cdots$ denotes a remainder in $O\left(\frac1{n^4}\right)$.