I'm trying to find a closed-form solution $\forall$ odd integer $n\ge 3$ for the determinant of a matrix with some structure on it. After some manipulation, I've reduced it to the following matrix:
$\small\begin{bmatrix}\boldsymbol{t_{1}^{n}-t_{a}^{n}} & \boldsymbol{t_{2}^{n}-t_{a}^{n}} & \boldsymbol{\cdots} & \boldsymbol{t_{a-1}^{n}-t_{a}^{n}} & nt_{1}^{n-1} & \cdots & nt_{a-1}^{n-1} & nt_{a}^{n-1}\\ \boldsymbol{t_{1}^{n-1}-t_{a}^{n-1}} & \boldsymbol{t_{2}^{n-1}-t_{a}^{n-1}} & \boldsymbol{\cdots} & \boldsymbol{t_{a-1}^{n-1}-t_{a}^{n-1}} & (n-1)t_{1}^{n-2} & \cdots & (n-1)t_{a-1}^{n-2} & (n-1)t_{a}^{n-2}\\ \boldsymbol{\vdots} & \boldsymbol{\vdots} & \boldsymbol{\ddots} & \boldsymbol{\vdots} & \vdots & \ddots & \vdots & \vdots\\ \boldsymbol{t_{1}^{2}-t_{a}^{2}} & \boldsymbol{t_{2}^{2}-t_{a}^{2}} & \boldsymbol{\cdots} & \boldsymbol{t_{a-1}^{2}-t_{a}^{2}} & 2t_{1} & \cdots & 2t_{a-1} & 2t_{a}\\ \boldsymbol{t_{1}-t_{a}} & \boldsymbol{t_{2}-t_{a}} & \boldsymbol{\cdots} & \boldsymbol{t_{a-1}-t_{a}} & 1 & \cdots & 1 & 1 \end{bmatrix}_{n\times n}$
where $a:=\frac{n+1}{2}$, the bold block is $n\times(\frac{n+1}{2}-1)$, and the non-bold block is $n \times \frac{n+1}{2}$.
Although it has some similarities with the Vandermonde Matrix or some generalizations, it's not the same. Using some values of n, its determinant looks pretty simple, which leads me to think that there should be a closed-form solution:
$n=3$: $$ det\left( \left[\begin{array}{ccc} {t_{1}}^3-{t_{2}}^3 & 3\,{t_{1}}^2 & 3\,{t_{2}}^2\\ {t_{1}}^2-{t_{2}}^2 & 2\,t_{1} & 2\,t_{2}\\ t_{1}-t_{2} & 1 & 1 \end{array}\right] \right)= -{\left(t_{1}-t_{2}\right)}^4 $$
$n=5$: $$ det\left( \left[\begin{array}{ccccc} {t_{1}}^5-{t_{3}}^5 & {t_{2}}^5-{t_{3}}^5 & 5\,{t_{1}}^4 & 5\,{t_{2}}^4 & 5\,{t_{3}}^4\\ {t_{1}}^4-{t_{3}}^4 & {t_{2}}^4-{t_{3}}^4 & 4\,{t_{1}}^3 & 4\,{t_{2}}^3 & 4\,{t_{3}}^3\\ {t_{1}}^3-{t_{3}}^3 & {t_{2}}^3-{t_{3}}^3 & 3\,{t_{1}}^2 & 3\,{t_{2}}^2 & 3\,{t_{3}}^2\\ {t_{1}}^2-{t_{3}}^2 & {t_{2}}^2-{t_{3}}^2 & 2\,t_{1} & 2\,t_{2} & 2\,t_{3}\\ t_{1}-t_{3} & t_{2}-t_{3} & 1 & 1 & 1 \end{array}\right] \right)= -{\left(t_{1}-t_{2}\right)}^4\,{\left(t_{1}-t_{3}\right)}^4\,{\left(t_{2}-t_{3}\right)}^4 $$
I was wondering if there is a known closed-form solution for this determinant, or if it could be found using the determinant of a generalized Vandermonde matrix
Thanks!