Problem: Decide whether or not $\lim_{n\to \infty} \frac{2}{\mathsf{e}}\left(\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{k} \left(1-\frac{2k}{n}\right)^{n-1}\right)^{-1/n}$ exists.
Background Information: I encountered this problem, when I tried to answer the following question Interval of convergence of Lagrange's infinite series
In my answer there, I $\color{blue}{\textrm{GUESS}}$ that the limit exists and equals to the Laplace limit $0.66274 34193 49181 58097 47420 97109 25290...$ which is the solution of the equation $x \mathrm{e}^{\sqrt{1+x^2}} = 1 + \sqrt{1+x^2}$. (For Laplace limit and more information, see Ref. [1]-[4].)
Let $B_n \triangleq \frac{2}{\mathsf{e}}\left(\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{k} \left(1-\frac{2k}{n}\right)^{n-1}\right)^{-1/n}$. Some numerical experiments show that $B_n$ is non-increasing. I tried to prove it, but have not yet succeeded.
When $n=1000$ (Maple can not easily evaluate $B_n$ for larger $n$), $B_{1000} = 0.6627434531...$
Any comments and solutions are welcome.
Reference
[1] https://en.wikipedia.org/wiki/Laplace_limit
[2] http://www.mygeodesy.id.au/documents/Solutions%20of%20Keplers%20Equation.pdf
[3] https://arxiv.org/pdf/1305.3438.pdf
[4] "Orbital Mechanics for Engineering Students", http://www.nssc.ac.cn/wxzygx/weixin/201607/P020160718380095698873.pdf