Let n be a positive integer and $$\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+\cdots+a_{2 n} x^{2 n}$$
then the value of $a_{0}^{2}-a_{1}^{2}+a_{2}^{2} - \dots+a_{2 n}^{2}$ is
My approach:-
Replacing $x$ by $(-1 / x),$ we get $$ \begin{array}{r} \left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)^{n}=a_{0}-\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\cdots-a_{2 n-1} \cdot \frac{1}{x^{2 n-1}}+\frac{a_{2 n}}{x^{2 n}} \\ \text { or, }\left(1-x+x^{2}\right)^{n}=a_{0} x^{2 n}-a_{1} x^{2 n-1}+a_{2} x^{2 n-2}+\cdots+a_{2 n}..... \tag{1} \end{array} $$ And given $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+\cdots+a_{2 n} x^{2 n} \ldots \ldots \ldots \ldots \ldots . \tag{2}.$ Multiplying corresponding sides of (1) and $(2),$ we have $$ \left(1+x^{2}+x^{4}\right)^{n}=\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2 n} x^{2 n}\right) \times\left(a_{0} x^{2 n}-a_{1} x^{2 n-1}+a_{2} x^{2 n-2}+\cdots+\right. $$ $\left.a_{2 n}\right) \ldots \ldots...\tag{3}$ $$ \left(1+x^{2}+x^{4}\right)^{n}=\left(a_{0}+a_{1} x^{2}+a_{2} x^{4}+\cdots+a_{n} x^{2n}+\cdots+a_{2 n} x^{4 n}\right) \ldots \ldots\tag{4} $$ Equating coefficient of $x^{2 n}$ on both sides of (3) and (4)
$$ a_{0}^{2}-a_{1}^{2}+a_{2}^{2} -\cdots +a_{2 n}^{2}=a_{n} $$
But this method seems very tedious to me.
Any other approach would be greatly appreciated
\tag{4}, not.......(4). – metamorphy Jun 19 '20 at 19:00