Let $p: \tilde{X} \rightarrow X$ be a covering space with $p^{-1}(x)$ finite and nonempty for all $x \in X .$ Show that $\tilde{X}$ is compact Hausdorff iff $X$ is compact Hausdorff.
Proof :
(1) If $\tilde{X}$ is compact. since $p$ is continuous and $X$ is the continuous image of a compact set hence is compact.
(2) If $\tilde{X}$ is Hausdorff, show that $X$ is Hausdorff. For $x, y \in X .$ Suppose there is an evenly covered open set $U$ containing both $x, y .$ Then $p^{-1}(U)$ contains $p^{-1}(x)$ and $p^{-1}(y) .$ Take one of the preimage of this open set, say, $p^{-1}(U)$ since $\tilde{X}$ is Hausdorff, there exist open sets $U_{x}$ and $U_{y}$ in $p^{-1}(U)$ containing $p^{-1}(x)$ and $p^{-1}(y)$ and $U_{x} \cap U_{y}=\phi .$ i.e. $p^{-1}(x) \in U_{x}$ and $p^{-1}(y) \in U_{y} .$ So we have $x \in p\left(U_{x}\right)$ and $y \in P\left(U_{y}\right)$ and $p\left(U_{x}\right) \cap p\left(U_{y}\right)=\phi$ .
Now, suppose there is no such open set exists. Let $V_{x}$ be an open set containing $x$ but not $y$ and $V_{y}$ be an open set containing $y$ but not $x .$ Then $p^{-1}\left(V_{x}\right)=\bigcup \tilde{U}_{\tilde{x}}$ and $p^{-1}\left(V_{y}\right)=\bigcup \tilde{V}_{\tilde{y}}$ $\operatorname{Fix} \tilde{x} \in p^{-1}\left(V_{x}\right) \subset U_{\alpha}$ for some $\alpha .$ since $\tilde{X}$ is Hausdorff. Pick an open set $\tilde{V}_{x} \subset p^{-1}\left(V_{x}\right)$ containing $\tilde{x}$ and $\tilde{V}_{\tilde{y}} \subset p^{-1}\left(V_{y}\right)$ containing $\tilde{y}$ for each $\tilde{y} \in p^{-1}(y)$ such that $\tilde{V}_{\tilde{x}} \cap \tilde{V}_{\tilde{y}}=\phi .$ Then $\left(\left(\cap \tilde{V}_{x}\right) \cap \tilde{V}_{y}=\phi \text { for all } y . \text { since } p\left(\left(\cap \tilde{V}_{\tilde{x}}\right) \cap \tilde{V}_{\tilde{y}}\right)=p\left(\cap \tilde{V}_{\tilde{x}}\right) \cap p\left(\tilde{V}_{\tilde{y}}\right) \text { and } x \in p\left(\cap \tilde{V}_{\tilde{x}}\right) \text { and } y \in p\left(\hat{V}_{\tilde{y}}\right)\right.$ Claim that $p\left(\cap \tilde{V}_{\tilde{x}}\right) \cap p\left(\tilde{V}_{\tilde{y}}\right)=\phi$ Suppose $p\left(\cap \tilde{V}_{\tilde{x}}\right) \cap p\left(\tilde{V}_{\tilde{y}}\right)=\{z\} .$ Then $p^{-1}(z) \subset \cap \tilde{V}_{\tilde{x}}$ and $p^{-1}(z) \subset \cap \tilde{V}_{\tilde{y}}$ for all $y .$ This is a contradiction to the fact that $\left(\cap \tilde{V}_{\tilde{x}}\right) \cap \tilde{V}_{\tilde{y}}=\phi .$ Hence $X$ is Hausdorff. (3) If $X$ is Hausdorff, prove that $\tilde{X}$ is Hausdorff. For $x, y \in \tilde{X},$ if $p(x) \neq p(y) .$ since $X$ is Hausdorff, there is an open set $U_{x}$ containing $p(x)$ and open set $U_{y}$ containing $p(y)$ such that $U_{x} \cap U_{y}=\phi .$ So their preimages $p^{-1}\left(U_{x}\right)$ and $p^{-1}\left(U_{y}\right)$ are also disjoint. If not, suppose $p^{-1}\left(U_{x}\right) \cap p^{-1}\left(U_{y}\right)=\{z\} .$ Then $p(z) \in U_{x}$ and $p(z) \in U_{y}$ which is a contradiction. Now, suppose $p(x)=p(y)$ in $X,$ take the open set $U_{x}$ containing $p(x) .$ Then $x \in P^{-1}\left(U_{\alpha}\right)$ and $y \in p^{-1}\left(U_{\alpha}\right) .$ Hence $x$ and $y$ are either the same point or on different sheet. Therefore, $\tilde{X}$ is Hausdorff.
(4) If $X$ is compact, how we can prove $\tilde{X}$ is compact ?.
i think we have :
theorem : Let $X$ be a Hausdorff locally compact in $x \in X .$ then for each open nbd $U$ of $x$ there exists an open nbd $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.
so we can write $ X= \bar{V_1} \cup \bar{V_2} \cup \bar{V_3} ... \cup \bar{V_n} $ then
$ \tilde{X} = p^{-1}(X)= p^{-1}(\bar{V_1} \cup \bar{V_2} \cup \bar{V_3} ... \cup \bar{V_n} ) =p^{-1}(\bar{V_1} ) \cup p^{-1}(\bar{V_2}) \cup p^{-1}(\bar{V_3}) ... \cup p^{-1}(\bar{V_n} ) $ now is every $p^{-1}(\bar{V_n})$ compact ? is my proof true ?