Using Fermat's little theorem, we know that $$k^{p-2} \cdot k \equiv 1 \pmod p.$$
To find the multiplicative inverse of $6$ modulo $17$, we need to calculate $6^{15} \pmod {17}$. It's supposed to be all congruences hold modulo $17$.
$$6^{15} \equiv 6^8 \cdot 6^4 \cdot 6^2 \cdot 6 \equiv 16\cdot4\cdot2\cdot6 \equiv 3 \pmod {17}$$
I need help to understand the solution of $6^{15} \equiv 3 \pmod {17}$.
Thanks.