2

Is there a way to calculate directly the root of a polynomial of the form:

$$a x^{n+1} + b x^{n} - 1 = 0, \quad a,b,x \in \mathbb{R}^{+}, n \in \mathbb{N}$$

1 Answers1

0

Here: let $x=1/z$ to obtain $$a+bz-z^{n+1}=0.$$ Then you can go several ways. One is $$z=\sqrt[n+1]{a+b\sqrt[n+1]{a+b\sqrt[n+1]{a+b(\cdots)}}}$$ provided this continued radical converges. The other such method is Series Reversion. Thus $$z=-b\sum_{n\geqslant 1}\frac{(2n-2)!}{n!(n-1)!}\frac{a^n}{b^{2n}}=-b(a/b^2+a^2/b^4+2a^3/b^6+\cdots)$$