Denote $$F(z)=\prod _{k=0}^{\infty}\text{sinc} \left(\frac{\pi z}{2 k+1}\right)=\prod _{n=1}^{\infty } \cos \left(\frac{\pi z}{2 n}\right)$$
How can we prove $F\in S(\mathbb{R})$ (Schwartz space) ? I've already shown that $F(z)$ is entire and rapidly decreasing in strip $|\Im(z)|âĪr$ for $r>0$.
Background: This arises from solving Borwein integrals via Fourier transform.