How to prove the following Division Theorem/Half Remainder Version?
∀ a , b ∈
Z
, b ≠ 0 : ∃ ! q , r ∈
Z
: a = q b
r , −
|
b
|
/
2
≤ r <
|
b
|
/
2
How to prove the following Division Theorem/Half Remainder Version?
∀ a , b ∈
Z
, b ≠ 0 : ∃ ! q , r ∈
Z
: a = q b
r , −
|
b
|
/
2
≤ r <
|
b
|
/
2
Hints.
For uniqueness, use the fact that the only integral multiple of $b$ in $ [-\vert b\vert /2;\vert b\vert /2)$ is $0$.
For existence:
Assume that you proved the existence of $q$ and $r$ if $b>0$. How to deduce the existence when $b<0$ ?
Assume that $b>0$. Write $a=q'b+r', 0\leq r' \leq \vert b\vert.$ If $b/2\leq r<b$, in which interval $r-b$ belongs to ?