Evaluate the limit
$$\displaystyle\lim_{n \to \infty} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^2(nx)} dx$$
Using property of definite integral $\int_{0}^{2a} f(x).dx=2\int_{0}^{a} f(x)dx$,when $f(2a-x)=f(x)$ I got
$$\displaystyle\lim_{n \to \infty} \int_{o}^{\pi} \frac{\sin x}{1+\cos ^2(nx)} dx=2\displaystyle\lim_{n \to \infty} \int_{o}^{\pi/2} \frac{\sin x}{1+\cos ^2(nx)} dx$$ but I cannot proceed after that. Could someone provide me with some hint? Till now I have only done integration in terms of elementary functions. Any hint would be appreciated.