This is a particular case of Theorem 1.50 in my Collected trivialities on algebra derivations (as of 18 October 2020), which says the following (up to different notations):
Theorem. Let $A$ be a commutative ring. Let $\delta : A \to A$ be a derivation. Let $a_1, a_2, \ldots, a_n \in A$ and $a \in A$. Then,
\begin{align}
W_\delta\left(aa_1, aa_2, \ldots, aa_n\right) = a^n W_\delta\left(a_1, a_2, \ldots, a_n\right) ,
\end{align}
where the $\delta$-Wronskian of an $n$-tuple $\left(b_1, b_2, \ldots, b_n\right) \in A^n$ is defined as the determinant of the $n\times n$-matrix
\begin{align}
\begin{pmatrix}
\delta^0\left(b_1\right) & \delta^1\left(b_1\right) & \cdots & \delta^{n-1}\left(b_1\right) \\
\delta^0\left(b_2\right) & \delta^1\left(b_2\right) & \cdots & \delta^{n-1}\left(b_2\right) \\
\vdots & \vdots & \ddots & \vdots \\
\delta^0\left(b_n\right) & \delta^1\left(b_n\right) & \cdots & \delta^{n-1}\left(b_n\right)
\end{pmatrix} .
\end{align}
To recover your claim from this theorem, let $A$ be the ring of smooth functions, and set $\delta = \dfrac{d}{dx}$ and $a_i = y_i$ and $a = y$.
The proof of the theorem follows the same plan as my comment: The trick is to write the matrix
\begin{align}
\begin{pmatrix}
\delta^0\left(aa_1\right) & \delta^1\left(aa_1\right) & \cdots & \delta^{n-1}\left(aa_1\right) \\
\delta^0\left(aa_2\right) & \delta^1\left(aa_2\right) & \cdots & \delta^{n-1}\left(aa_2\right) \\
\vdots & \vdots & \ddots & \vdots \\
\delta^0\left(aa_n\right) & \delta^1\left(aa_n\right) & \cdots & \delta^{n-1}\left(aa_n\right)
\end{pmatrix}
\end{align}
(whose determinant is $W_\delta\left(aa_1, aa_2, \ldots, aa_n\right)$) as a matrix product $BC$, where $B$ is the matrix
\begin{align}
\begin{pmatrix}
\delta^0\left(a_1\right) & \delta^1\left(a_1\right) & \cdots & \delta^{n-1}\left(a_1\right) \\
\delta^0\left(a_2\right) & \delta^1\left(a_2\right) & \cdots & \delta^{n-1}\left(a_2\right) \\
\vdots & \vdots & \ddots & \vdots \\
\delta^0\left(a_n\right) & \delta^1\left(a_n\right) & \cdots & \delta^{n-1}\left(a_n\right)
\end{pmatrix}
\end{align}
(whose determinant is $W_\delta\left(a_1, a_2, \ldots, a_n\right)$) and where $C$ is a certain upper-triangular matrix whose diagonal entries are $a, a, \ldots, a$. More precisely, $C$ is the upper-triangular matrix whose $\left(i,j\right)$-th entry is $\dbinom{j-1}{i-1} \delta^{i-j}\left(a\right)$ whenever $j \geq i$.
The same argument applies in the more general case when the functions $y_i$ are merely $n-1$-times differentiable (as opposed to smooth), even though the derivation $\delta = \dfrac{d}{dx}$ no longer literally exists as a derivation on a ring.