Question If $a>0$, show that $$\int_a^\infty e^{-t^2} \mathrm{d}t = \frac{e^{-a^2}}{2a}\left(1-\frac{1}{2a^2}+f(a)\right)$$ where $0<f(a)<\displaystyle\frac{3}{4a^4}$
My approach: Applying integration by parts twice, $$\int_a^\infty e^{-t^2} \mathrm{d}t=\frac{1}{2}\int_{a^2}^\infty e^{-p}p^{-1/2} \mathrm{d}p\\=\frac{e^{-a^2}}{2a}\left(1-\frac{1}{2a^2}\right)+\frac{3}{8}\int_{a^2}^\infty e^{-p}p^{-5/8} \mathrm{d}p$$ Observation
- $p>a^2\\\implies 0<e^{-p}<e^{-a^2}\\\implies 0<e^{-p}p^{-5/2}<e^{-a^2}a^{-5}$
- $p>a^2\\\implies 0<e^{-p}<e^{-a^2}\\\implies 0<e^{-p}p^{-1/2}<e^{-a^2}a^{-5}\\\implies 0<e^{-p}p^{-1/2}p^{-2}<e^{-a^2}a^{-5}p^{-2}\\\implies 0<\int_{a^2}^\infty e^{-p}p^{-5/2} \mathrm{d}p<e^{-a^2}a^{-1}\int_{a^2}^\infty p^{-2} \mathrm{d}p\\\implies 0<\int_{a^2}^\infty e^{-p}p^{-5/2} \mathrm{d}p<e^{-a^2}a^{-3}$
After applying integration by parts twice, I don't know where to go?
Any kinds of help will be appreciated. Thank you!!