-3

Question If $a>0$, show that $$\int_a^\infty e^{-t^2} \mathrm{d}t = \frac{e^{-a^2}}{2a}\left(1-\frac{1}{2a^2}+f(a)\right)$$ where $0<f(a)<\displaystyle\frac{3}{4a^4}$

My approach: Applying integration by parts twice, $$\int_a^\infty e^{-t^2} \mathrm{d}t=\frac{1}{2}\int_{a^2}^\infty e^{-p}p^{-1/2} \mathrm{d}p\\=\frac{e^{-a^2}}{2a}\left(1-\frac{1}{2a^2}\right)+\frac{3}{8}\int_{a^2}^\infty e^{-p}p^{-5/8} \mathrm{d}p$$ Observation

  1. $p>a^2\\\implies 0<e^{-p}<e^{-a^2}\\\implies 0<e^{-p}p^{-5/2}<e^{-a^2}a^{-5}$
  2. $p>a^2\\\implies 0<e^{-p}<e^{-a^2}\\\implies 0<e^{-p}p^{-1/2}<e^{-a^2}a^{-5}\\\implies 0<e^{-p}p^{-1/2}p^{-2}<e^{-a^2}a^{-5}p^{-2}\\\implies 0<\int_{a^2}^\infty e^{-p}p^{-5/2} \mathrm{d}p<e^{-a^2}a^{-1}\int_{a^2}^\infty p^{-2} \mathrm{d}p\\\implies 0<\int_{a^2}^\infty e^{-p}p^{-5/2} \mathrm{d}p<e^{-a^2}a^{-3}$

After applying integration by parts twice, I don't know where to go?

Any kinds of help will be appreciated. Thank you!!

PNDas
  • 947
  • 1
  • 9
  • 27

1 Answers1

1

You can continue your solution by applying integration by parts one more time $$\int_{a^2}^{\infty}e^{-x}x^{-5/2}\,dx=\frac{e^{-a^2}}{a^5}-\frac 52\int_{a^2}^{\infty}e^{-x}x^{-7/2}\,dx<\frac{e^{-a^2}}{a^5} $$ Hence, $$0<\frac 38\int_{a^2}^{\infty}e^{-x}x^{-5/2}\,dx<\frac{3e^{-a^2}}{8a^5} $$ and now you can conclude.

bjorn93
  • 6,847