It is a convex set.
Let $(x_1, y_1, z_1)\in C$ and $(x_2, y_2, z_2) \in C$. Let $0\le t \le 1$.
We have to prove that $(tx_1 + (1-t)x_2, \ ty_1 + (1-t)y_2, \ tz_1 + (1-t)z_2) \in C$.
First, by Cauchy-Bunyakovsky-Schwarz inequality, we have
\begin{align}
\sqrt{[tx_1 + (1-t)x_2][ty_1 + (1-t)y_2]} &\ge t\sqrt{x_1y_1} + (1-t)\sqrt{x_2y_2}\\
&\ge tz_1 + (1-t)z_2
\end{align}
since $\sqrt{x_1y_1}\ge z_1$ and $\sqrt{x_2y_2} \ge z_2$.
Second, by Holder inequality, we have
\begin{align}
&[tx_1 + (1-t)x_2]\, [ty_1 + (1-t)y_2] \, [ tz_1 + (1-t)z_2]\\
\ge\ & (t\sqrt[3]{x_1y_1z_1} + (1-t)\sqrt[3]{x_2y_2z_2})^3 \\
\ge\ & (t + 1-t)^3 \\
=\ & 1
\end{align}
since $x_1y_1z_1 \ge 1$ and $x_2y_2z_2 \ge 1$.
Another way:
Note that $f(x, y, z) = \sqrt[3]{xyz}$ is concave on $\{(x, y, z) \in \mathbb{R}^3: \ x > 0, y > 0, z > 0\}$. See [How can it be proved that the geometric mean function is concave?
Thus, we have
\begin{align}
&f(tx_1 + (1-t)x_2, \ ty_1 + (1-t)y_2, \ tz_1 + (1-t)z_2)\\
\ge\ & tf(x_1, y_1, z_1) + (1-t)f(x_2, y_2, z_2)\\
\ge\ & 1.
\end{align}
We are done.
$\phantom{2}$
Another solution:
Fact 1: Let $m$ and $n$ be positive integers. Denote $x = (x_1, x_2, \cdots, x_n)$. Let $\Omega \subseteq \mathrm{R}^n$ be a convex set. Suppose $f_k(x)$, $k=1, 2, \cdots, m$ are convex functions on $\Omega$.
Then, $S = \{x\in \Omega: \ f_k(x) \le 0, \ k= 1, 2, \cdots, m\}$ is convex.
[Proof of Fact 1: Let $u\in S$ and $v\in S$. Let $0 \le t \le 1$.
For $k=1, 2, \cdots, m$, we have $f_k(tu+(1-t)v) \le tf_k(u) + (1-t)f_k(v) \le 0$.
Thus, $tu + (1-t)v \in S$.
We are done.]
Now, for our problem,
since $f_1(x, y, z) = -\sqrt[3]{xyz} + 1$ and $f_2(x, y, z) = -\sqrt{xy} + z$ are convex functions on
$\{(x, y, z)\in \mathbb{R}^3 : \ x > 0, y > 0, z > 0\}$, by Fact 1,
$\{(x, y, z)\in \mathbb{R}^3: \ -\sqrt[3]{xyz} + 1\le 0, \ -\sqrt{xy} + z \le 0, \ x > 0, \ y > 0, \ z > 0\}$ is convex. We are done.