Let $P(X)$ be an irreducible polynomial over $\mathbb Q$ with degree $d$ and pick a root $\alpha$. Let us have the fields $A = \mathbb Q(\alpha)$ and $B$ the splitting field of $P(X)$. $A$ has degree $d$ and is contained in $B$.
If $A = B$ then $P(X)$ splits into linear factors, this is equivalent to the roots being expressible as polynomials in $\alpha$.
$A = B$ happens iff $[B : \mathbb Q] = d$ in other words the Galois group has size d.
Example 1: degree 5 polynomial with group $C_5$
polynomial from https://www.lmfdb.org/NumberField/?hst=List&galois_group=C5&search_type=List
? p(x) = x^5 - 10*x^3 - 5*x^2 + 10*x - 1
%23 = (x)->x^5-10*x^3-5*x^2+10*x-1
? lift(factor(Mod(p(x),p(a))))
%24 =
[ x - a 1]
[ x + (-3/7*a^4 + 2/7*a^3 + 24/7*a^2 + 6/7*a - 6/7) 1]
[x + (-2/7*a^4 - 1/7*a^3 + 23/7*a^2 + 18/7*a - 25/7) 1]
[ x + (1/7*a^4 - 3/7*a^3 - 8/7*a^2 + 19/7*a + 9/7) 1]
[ x + (4/7*a^4 + 2/7*a^3 - 39/7*a^2 - 36/7*a + 22/7) 1]
Example 2: degree 4 with group $V_4$
polynomial from https://www.lmfdb.org/NumberField/?hst=List&galois_group=4T2&search_type=List
? p(x) = x^4 + 9
%25 = (x)->x^4+9
? lift(factor(Mod(p(x),p(a))))
%26 =
[ x - a 1]
[ x + a 1]
[x - 1/3*a^3 1]
[x + 1/3*a^3 1]
Non-Example. Degree 6 with group $S_3 \times C_3$.
? p(x) = x^6 - x^3 + 7
%37 = (x)->x^6-x^3+7
? lift(factor(Mod(p(x),p(a))))
%38 =
[ x - a 1]
[x + (-1/3*a^4 + 2/3*a) 1]
[ x + (1/3*a^4 + 1/3*a) 1]
[ x^3 + (a^3 - 1) 1]
In this case we get 3 linear factors and then another non-linear factor. I don't know how to characterize this sort of situation.