Find the value of $x$ if
$$x^3-2x^2+3x+5=0$$
Find the value of $x$ if
$$x^3-2x^2+3x+5=0$$
If $ax^3+bx^2+cx+d=0$, then the real solution of the equation is:
$x_1=$
$-\frac{b}{3a}$
$+\sqrt[3]{\left ( \frac{-b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a} \right )+\sqrt{\left ( \frac{-b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a} \right )^2+\left ( \frac{c}{3a}-\frac{b^2}{9a^2} \right )^3}}$
$+\sqrt[3]{\left ( \frac{-b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a} \right )-\sqrt{\left ( \frac{-b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a} \right )^2+\left ( \frac{c}{3a}-\frac{b^2}{9a^2} \right )^3}}$
In your case, put $a=1,b=-2,c=3,d=5$, you will get the real value of $x$:
The other two roots are complex, the can be obtained by factoring the left hand side of your equation, resulting a quadratic factor, which can be solved using the formula:
If $Ax^2+Bx+C=0$, and $A \ne 0$, then:
$$x_{2,3}=\frac{-B \pm \sqrt{B^2-4AC}}{2A}$$