I must prove this property:
Property: let $A$ a be ring, then $(-a) \cdot (-b) = a \cdot b $, $\forall a,b \in A$.
Proof: let $a \in A$ and $b \in A$, by hypothesis $A$ is a ring then $a \cdot 0=0$ and $b + (-b) = (-b) + b= 0$ and $(-b) \in A $, therefore $a \cdot (b + (-b))=0$, but by hypothesis $\cdot$ is distributive then $a \cdot (b + (-b))=a \cdot b + a \cdot (-b) =0$, therefore $-(a \cdot (-b))=a \cdot b$, but in a ring is true that $-(c \cdot d)=(-c) \cdot d$, $\forall c,d \in A$, therefore we have $(-a) \cdot (-b)=-(a \cdot (-b))=a \cdot b$.
It is correct?
Thanks in advance!!