I am always told in my lessons of control engineering that the inverse Laplace Transform of $\frac{1}{p}$ is the Heaviside step function $\theta(t)$. But I have a problem when I calculate the inverse transform by its definition, which is (again according to my lessons)
$$\mathcal{L}^{-1}(F(p))=\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}F(p)e^{pt}\;\mathrm{d}p $$
Here is how I would begin to handle the problem but I can't get to the end.
$$\begin{align} \mathcal{L}^{-1}\left(\frac{1}{p}\right)&=\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}\;\frac{1}{p}e^{pt}\;\mathrm{d}p \end{align}$$
In order to calculate this integral, I calculate the contour integration by defining the contour $C_R$ as being the half circle of radius $R$ and of diameter $[\sigma-iR, \sigma+iR]$ with $\sigma>0$. This half circle contains $p=0$ and the contour integral
$$\begin{alignat}{2} &&\frac{1}{2\pi i}\oint_{C_R}\frac{e^{pt}}{p}\;\mathrm{d}p &= \frac{1}{2\pi i}\int_{T_R} \frac{e^{pt}}{p}\;\mathrm{d}p+\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}\;\frac{1}{p}e^{pt}\;\mathrm{d}p \\ &\Leftrightarrow\quad&\text{Res}_{p=0}\frac{e^{pt}}{p}&= \frac{1}{2\pi i}\int_{T_R} \frac{e^{pt}}{p}\;\mathrm{d}p+\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}\;\frac{1}{p}e^{pt}\;\mathrm{d}p\\ &\Leftrightarrow \quad&1-\frac{1}{2\pi i}\int_{T_R} \frac{e^{pt}}{p}\;\mathrm{d}p&= \mathcal{L}^{-1}\left(\frac{1}{p}\right) \end{alignat}$$
where $T_R$ is the arc of the half circle but I don't really know how to show that the integral on $T_R$ is nil... I tried by noting that on $T_R$, we had $p=\sigma+Re^{i\theta} = \sigma+R\cos\theta+iR\sin\theta $ that
$$\begin{align} \lim_{R\to\infty}\int_{T_R} \frac{e^{pt}}{p}\;\mathrm{d}p &= \lim_{R\to\infty}\int_{\pi/2}^{-\pi/2} \frac{e^{[(\sigma+R\cos\theta)+iR\sin\theta]t}}{\sigma+Re^{i\theta}}iRe^{i\theta}\;\mathrm{d}\theta \\ &=\lim_{R\to\infty}\int_{\pi/2}^{-\pi/2} \frac{e^{[(\sigma+R\cos\theta)+iR\sin\theta]t}}{\sigma+Re^{i\theta}}iRe^{i\theta}\;\mathrm{d}\theta \\ &\leq \lim_{R\to\infty}\int_{\pi/2}^{-\pi/2} \frac{e^{[(\sigma+R\cos\theta)]t}}{|\sigma+Re^{i\theta}|}R\;\mathrm{d}\theta \\ \end{align}$$
and here is where I'm stuck... I don't know how to handle it. Furthermore, I don't know how the heaviside step function $\theta(t)$ appears.