So $p =ax+p^2y$ and $p^2 =bz+p^3w$
$ax= p-p^2y$ and $bz= p^2-p^3w$
$axbz= p^3-p^4w-p^4y+p^5wy$
$abxz= p^3-p^4(w+y-pwy)$
$abxz+p^4(w+y-pwy) = p^3$
How can I say that $\gcd(ab,p^4) = p^3$ ?
So $p =ax+p^2y$ and $p^2 =bz+p^3w$
$ax= p-p^2y$ and $bz= p^2-p^3w$
$axbz= p^3-p^4w-p^4y+p^5wy$
$abxz= p^3-p^4(w+y-pwy)$
$abxz+p^4(w+y-pwy) = p^3$
How can I say that $\gcd(ab,p^4) = p^3$ ?
$\newcommand{\gcd}{\text{gcd}}$
If $$\gcd(a,p^2)=p\quad \text{and}\quad \gcd(b,p^3)=p^2,$$ then $$a=p\alpha ,\quad \text{where }\gcd(\alpha ,p)=1,$$ and $$b=p^2\beta ,\quad \text{where } \gcd(\beta ,p)=1.$$
Therefore $$ab=p^3\alpha \beta ,$$ where $p\nmid \alpha \beta $. And thus, the claim follow.