Show that
$$\int_{0}^{\pi} \frac {x dx}{(a^2\sin^2 x+ b^2\cos^2 x)^{2}}=\frac {\pi^2 (a^2+b^2)}{4a^3b^3}$$
My Attempt:
Let $$I=\int_{0}^{\pi} \frac {x dx}{(a^2\sin^2 x+b^2 \cos^2 x)^2} $$ Using $\int_{a}^{b} f(x) dx=\int_{a}^{b} f(a+b-x)dx$ we can write:
$$I=\int_{0}^{\pi} \frac {(\pi - x)dx}{(a^2\sin^2 x+b^2\cos^2 x)^2} $$ $$I=\int_{0}^{\pi} \frac {\pi dx}{(a^2\sin^2 x+b^2\cos^2 x)^2} - \int_{0}^{\pi} \frac {x dx}{(a^2\sin^2 x+b^2\cos^2 x)^2}$$ $$I=2\pi \int_{0}^{\frac {\pi}{2}} \frac {dx}{(a^2\sin^2 x+b^2\cos^2 x)^2} - I$$ $$I=\pi \int_{0}^{\frac {\pi}{2}} \frac {dx}{(a^2\sin^2 x+b^2 \cos^2 x)^2} $$