Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a $L$-Lipschitz function: $\|f(x)-f(y)\| \le L \|x-y\|$, $L >0$.
How to prove $\|f(x)-f(y)\|^2 \le L \left( f(x)-f(y)\right)^T (x-y)$?
Update: Sorry, I forget to specify an important condition: in fact, $f$ is the gradient of a convex function.