To explain my comment, as requested:
From solving
$\frac{\partial}{\partial x}(21x^2-6xy+29y^2+6x-58y-151)=0,\frac{\partial}{\partial y}(21x^2-6xy+29y^2+6x-58y-151)=0$ the center is $(0,1).$
$x'=x,y'=y-1$
Now consider $21x'^2-6x'y'+29y'^2-180=0$ which is centered at the origin $(x',y')=(0,0).$
The angle this is rotated is given by $\tan(2\theta)=\frac{-6}{21-29}=\frac34$ or $\cos(\theta)=\frac3{\sqrt{10}},\sin(\theta)=\frac1{\sqrt{10}}.$
$x''=\frac3{\sqrt{10}} x'+\frac1{\sqrt{10}} y',$
$y''=-\frac1{\sqrt{10}} x'+\frac3{\sqrt{10}} y'$
with inverse
$x'=\frac3{\sqrt{10}} x''-\frac1{\sqrt{10}} y'',$
$y'=\frac1{\sqrt{10}} x''+\frac3{\sqrt{10}} y''$
Substituting we get $20x''^2+30y''^2-180=0,$ which is $$(\frac{x''}{3})^2+(\frac{y''}{\sqrt{6}})^2 -1=0.$$
The rest is just back-substituting and a scaling.
To answer the question $a=3,b=\sqrt{6}.$ $e=\sqrt{1-\frac{b^2}{a^2}}=\frac1{\sqrt{3}}.$