By means of various manipulations that can be probably be more immediately condensed, I ended up recovering an integral that appears in another answer.
$$\begin{align*}
& \int_0^\tfrac\pi4 \arctan \sqrt{\frac{\cos(2x)}{2\cos^2x}} \, dx \\
&= \int_0^\tfrac\pi4 \arctan \sqrt{1 - \frac12\sec^2x} \, dx \\
&= \int_\tfrac\pi4^\tfrac\pi2 \arctan(\cos y) \frac{\cot y}{\sqrt{2\sin^2y-1}} \, dy & \sin y=\frac1{\sqrt2}\sec x \\
&= \int_0^\tfrac\pi4 \arctan(\sin y) \frac{\tan y}{\sqrt{2\cos^2y-1}} \, dy & y\to\frac\pi2-y \\
&= \int_0^1 \arctan \frac z{\sqrt{1+z^2}} \cdot \frac z{\sqrt{1-z^4}} \, dz & z=\tan y \\
&= \frac\pi4 \arctan\frac1{\sqrt2} - \frac12 \int_0^1 \frac{\arcsin z^2}{\sqrt{1+z^2}\left(1+2z^2\right)} \, dz & \text{by parts} \\
&= \frac\pi4 \arctan\frac1{\sqrt2} - \frac14 \int_0^1 \frac{\arcsin z}{\sqrt z \sqrt{1+z} (1+2z)} \, dz & z\to\sqrt z \\
&= \frac\pi4 \arctan\frac1{\sqrt2} - \frac14 \int_0^1 \frac{\arctan \frac z{\sqrt{1-z^2}}}{\sqrt z \sqrt{1+z} (1+2z)} \, dz & (*) \\
&= \frac\pi4 \arctan\frac1{\sqrt2} - \frac1{\sqrt2} \int_0^1 \frac{w \arctan \frac{1-w^2}{2w}}{\sqrt{1-w^2} \left(w^2-3\right)} \, dw & w=\sqrt{\frac{1-z}{1+z}} \\
&= \int_0^1 \frac{\sqrt2\,w \arctan w}{\sqrt{1-w^2} \left(w^2-3\right)} \, dw = \boxed{\frac{\pi^2}{24}} & (**)
\end{align*}$$
In $(*)$ we convert $\arcsin$ to its equivalent $\arctan$ form. In $(**)$, just before leaning on the linked result, we apply the identity
$$\arctan \frac{1-x^2}{2x} = \frac\pi2-2\arctan x$$
and find the constant term vanishes, since (e.g. via Euler substitution) we have
$$\int_0^1 \frac{w}{\sqrt{1-w^2}\left(3-w^2\right)}\,dw = \frac1{\sqrt2}\arctan\frac1{\sqrt2}$$