Formal definitions:
Regular Induction:
$(\forall n \in N, n \geqslant n_0)(h(n)) \iff h(n_0) \land ... \land h(n_1) \land (\forall k \in N, k \geqslant n_1)( h(k) \implies h(k + 1))$
Strong Induction:
$(\forall n \in N, n \geqslant n_0)(h(n))\\ \iff h(n_0) \land ... \land h(n_1) \land (\forall k \in N, k \geqslant n_1)( (\forall i \in [n_1, k])(h(i)) \implies h(k + 1))$
Note:
The above definitions heavily rely on formal logic, its concepts, symbols, and formulae. Formal logic is generally divided into predicate logic and propositional logic. It's effectively the basis language of all mathematical axioms, theorems, and proofs.
Both proofs can have as many basis conditions as they need. So, multiple basis conditions can never be an indication of which of these you should use.
For either regular or strong induction, the inductive condition only has to build from the last of the set of basis conditions.
The strong induction formula acts like a kind of catch-all where any combination of the previous "rungs" up to (and including) the current rung on the ladder can be used to imply that the next rung is true. You usually won't need all those rungs, but it helps if you need some random rung or a couple of rungs besides the current rung.
If you only need the current rung to prove the next rung, then strong induction is a bit overkill.
Though, if you think about it, regular induction is a subset of strong induction where the subset of previous "rungs" up to (and including) the current rung is restricted to only the current rung.
Regular Induction Example:
Prove that $\sum_{i=0}^{n}(i) = \frac{n(n + 1)}{2}$:
1. Preparations:
Let $n_0 = 0$
Let $n_1 = 0$
Let $(\forall n \in N)(f(n) = \sum_{i=0}^{n}{i})$
Let $(\forall n \in N)(g(n) = \frac{n(n + 1)}{2})$
Let $(\forall n \in N)(h(n) \iff f(n) = g(n))$
2. Definition:
$(\forall n \in N, n \geqslant n_0)(h(n)) \iff h(n_0) \land ... \land h(n_1) \land (\forall k \in N, k \geqslant n_1)( h(k) \implies h(k + 1))
$
$(\forall n \in N)(h(n)) \iff h(0) \land (\forall k \in N)( h(k) \implies h(k + 1))$
3. Evaluate the basis condition of $h(0)$:
$h(0) \iff f(0) = g(0) \iff \sum_{i=0}^{0}{(i)} = \frac{0(0 + 1)}{2} \iff 0 = 0 \iff T$
$h(0) \iff T$
4. Build up to the second condition (inductive condition) of the definition:
$(\forall k \in N)( h(k + 1) \iff f(k + 1) = g(k + 1))$
$(\forall k \in N)( h(k + 1) \iff \sum_{i=0}^{k + 1}{i} = \frac{(k + 1)(k + 2)}{2})$
$(\forall k \in N)( h(k + 1) \iff \sum_{i=0}^{k}{i} + (k + 1) = \frac{(k + 1)k}{2} + \frac{(k + 1)2}{2})$
$(\forall k \in N)( h(k + 1) \iff f(k) + (k + 1) = \frac{k(k + 1)}{2} + (k + 1))$
$(\forall k \in N)( h(k + 1) \iff f(k) + (k + 1) = g(k) + (k + 1))$
$(\forall k \in N)( h(k + 1) \iff f(k) = g(k))$
$(\forall k \in N)( h(k + 1) \iff h(k))$
$(\forall k \in N)( h(k) \iff h(k + 1))$
$(\forall k \in N)( h(k) \implies h(k + 1))$
5. Substitute into and work the definition:
$(\forall n \in N)(h(n)) \iff h(0) \land (\forall k \in N)( h(k) \implies h(k + 1))$
$(\forall n \in N)(h(n)) \iff T \land T$
$(\forall n \in N)(h(n)) \iff T$
$(\forall n \in N)(h(n))$
$(\forall n \in N)(f(n) = g(n))$
$(\forall n \in N)(\sum_{i=0}^{n}{i} = \frac{n(n + 1)}{2})$
$\square$
Strong Induction Example:
Prove that $a(n)$ is odd if $a(1) = 1$, $a(2) = 3$, and $a(n \gt 2) = 2a(n - 1) + a(n - 2)$:
1. Preparations:
Let $n_0 = 1$
Let $n_1 = 2$
$(\forall n \in N, n \geqslant n_0)(h(n) \iff a(n)$ is odd $)$
2. Definition:
$(\forall n \in N, n \geqslant n_0)(h(n))\\ \iff h(n_0) \land ... \land h(n_1) \land (\forall k \in N, k \geqslant n_1)( (\forall i \in [n_1, k])(h(i)) \implies h(k + 1))$
$(\forall n \in N, n \geqslant 1)(h(n))\\ \iff h(1) \land h(2) \land (\forall k \in N, k \geqslant 2)( (\forall i \in [2, k])(h(i)) \implies h(k + 1))$
3. Evaluate the basis conditions of $h(1)$ and $h(2)$:
$h(1) \iff a(1)$ is odd $\iff 1$ is odd $\iff T$
$h(2) \iff a(2)$ is odd $\iff 3$ is odd $\iff T$
4. Build up to the second condition (inductive condition) of the definition:
$(\forall k \in N, k \geqslant 2)( (h(k + 1) \iff a(k + 1)$ is odd$)$
$(\forall k \in N, k \geqslant 2)( (h(k + 1) \iff 2a(k + 1 - 1) + a(k + 1 - 2)$ is odd$)$
$(\forall k \in N, k \geqslant 2)( (h(k + 1) \iff 2a(k) + a(k - 1)$ is odd$)$
$(\forall k \in N, k \geqslant 2)( (h(k + 1) \iff a(k - 1)$ is odd$)$
$(\forall k \in N, k \geqslant 2)( (h(k + 1) \iff h(k - 1))$
$(\forall k \in N, k \geqslant 2)( (h(k - 1) \iff h(k + 1))$
$(\forall k \in N, k \geqslant 2)( (h(k - 1) \implies h(k + 1))$
Notice that we only need the "rung" below the current rung to prove the next rung.
Now, let's generalize:
$(\forall k \in N, k \geqslant 2)( ( h(2) \land h(3) \land ... \land h(k - 1) \land h(k) \implies h(k + 1))$
$(\forall k \in N, k \geqslant 2)( ( (\forall i \in [2, k])(h(i)) \implies h(k + 1))$
5. Substitute into and work the definition:
$(\forall n \in N, n \geqslant 1)(h(n))\\ \iff h(1) \land h(2) \land (\forall k \in N, k \geqslant 2)( (\forall i \in [2, k])(h(i)) \implies h(k + 1))$
$(\forall n \in N, n \geqslant 1)(h(n)) \iff T \land T \land T$
$(\forall n \in N, n \geqslant 1)(h(n)) \iff T$
$(\forall n \in N, n \geqslant 1)(h(n))$
$(\forall n \in N, n \geqslant 1)(a(n)$ is odd$)$
$\square$