Given the Scalar Huber Loss Function:
$$ {L}_{\delta} \left( x \right) = \begin{cases} \frac{1}{2} {x}^{2} & \text{for} \; \left| x \right| \leq \delta \\ \delta (\left| x \right| - \frac{1}{2} \delta) & \text{for} \; \left| x \right| > \delta \end{cases} $$
For the vector case one should apply the scalar function in a component wise manner and then sum all components:
$$ {H}_{\delta} \left( x \right) = \sum_{i} {L}_{\delta} \left( {x}_{i} \right) $$
What is the Proximal Operator for the vector function?
Namely what's $ \operatorname{prox}_{\lambda {H}_{\delta} \left( \cdot \right)} \left( y \right) = \arg \min_{x} \frac{1}{2} {\left\| x - y \right\|}_{2}^{2} + \lambda {H}_{\delta} \left( x \right) $?
Could anyone implement it in MATLAB?