If $a_1,a_2,\dotsc,a_n $ are positive real numbers, then prove that
$$\lim_{x \to \infty} \left[\frac {a_1^{1/x}+a_2^{1/x}+.....+a_n^{1/x}}{n}\right]^{nx}=a_1 a_2 \dotsb a_n.$$
My Attempt:
Let $P=\lim_{x \to \infty} \left[\dfrac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]^{nx} \implies \ln P=\lim_{x \to \infty} \ln \left[\frac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]^{nx} =\lim_{x \to \infty} nx \ln \left[\frac {a_1^{\frac{1}{x}}+a_2^{\frac {1}{x}}+.....+a_n^{\frac {1}{x}}}{n}\right]= \lim_{x \to \infty} n \left[\frac {\ln (a_1^{1/x}+a_2^{1/x}+...+a_n^{1/x})-\ln n}{1/x}\right]$
and this is $0/0$ form and so I have to apply L'Hospital's rule. Now things get a bit complicated during derivative.
Can someone point me in the right direction? Thanks in advance for your time.