Consider the simple cluster process: $$\sum_n \xi_n \epsilon_{X_n}$$ where $\{X_n\}$ are Poisson points independent of the iid non-negative integer sequence $\{\xi_n\}$. How do I find the Laplace functional? I am a bit confused reading about it online.
This is what I have so far. Let $\psi_N(f)$ be the Laplace functional and suppose $\mu$ is the mean measure of the Poisson random measure defined by $N$. \begin{align*} N(A) &= \sum_n \xi_n \epsilon_{X_n}(A) \\ \psi_N(f) &= E[e^{-\sum_n \xi_n \epsilon_{X_n(A_n)}}] \hbox{ where $A_n$ are disjoint} \\ &= E[\prod_{n} e^{-\xi_n N(A_n)}]\\ &= \prod_{n} E[e^{-\xi_n N(A_n)}]\\ &= \prod_{n} \exp(-\int (1-e^{-\xi_n 1_{A_n}(x)}) \mu(dx)) \end{align*}