Power tower mods are all resolvable by iteratively applying MOR = modular order reduction.
$\!\!\bmod 23\!:\,\ 3^{\large 11}\!\equiv 1\,\Rightarrow\, 3^{\Large 3^{\Large 3^{\Large 3^n}}}\!\!\!\!\!\! \equiv 3^{\Large\color{#c00}{3^{\Large 3^{\Large 3^n}}\!\!\!\!\bmod 11}}\!\equiv 3^{\large\color{#c00}9}\equiv 18\ $ by MOR, by
$\!\!\color{#c00}{\bmod 11}\!:\,\ \ 3^{\large 5}\equiv 1\,\Rightarrow\,\color{#c00}{3^{\Large 3^{\Large 3^n}}}\!\!\equiv 3^{\Large\color{#0a0}{3^{\Large 3^n}\!\bmod 5}}\equiv 3^{\large\color{#0a0}2}\equiv\color{#c00}9\, $ by ditto, by
$\!\!\color{#0a0}{\bmod 5}\!:\ \ \ \ \ 3^{\large 4}\equiv 1\,\Rightarrow\ \color{#0a0}{3^{\Large 3^n}}\!\equiv\ 3^{\Large 3^n\bmod 4}\equiv 3^{\large 3}\equiv\color{#0a0}2,\ \ {\rm by}\ \bmod 4\!:\! \smash{\overbrace{3^n \equiv 3}^{\!\!\large (-1)^{\Large n}\, \equiv\ -1}}\!\!\!,\ {\rm by}\ n\ \rm odd$
Hence $\,n\,$ odd $\,\Rightarrow\, x:= 3^\smash{\Large 3^{\Large 3^{{\Large 3^n}}}}\!\!\!\!\!\equiv 18\pmod{\!23},\,$ so $\,x\,$ odd $\Rightarrow\, x\equiv 18\!+\!23\equiv 41\pmod{\!46}$
For $\,n\,$ even we get $\, \color{#0a0}{3\pmod{\! 5}},\,$ so $\,3^{\large \color{#0a0}3}\equiv\color{#c00}{5\pmod{\! 11}},\:$ so $\,\ x\equiv 3^{\large\color{#c00}5}\equiv 13\pmod{\!23\ \&\ 46}$
Hence, more generally $\,\ \bbox[1px,border:1px solid #0a0]{\bbox[8px,border:1px solid #050]{\!\!\bmod 46\!:\,\ 3^{\Large 3^{\Large 3^{{\Large 3^n}}}}\!\!\!\equiv\, \left\{\begin{align} &41,\ \,n\,\ \rm odd\\ &13,\ \,n\,\ \rm even\end{align}\right.}}$