4

How to find the value of $$ \lim_{n \to \infty}\int \limits_{0}^{1} nx^n e^{ x^2} ?$$

From wolfram the limit approaches to $e$ for larger values of $n$. I substituted $x^2 $ with $u$ and obtained $$ \frac{ n} {2} \int \limits_{0}^{1} u^{\frac{n-1}{2}} e^{u} du $$

The value of this integral can be obtained from here. But still I'm unable to get it. Is there any better approach for this question?

LHF
  • 1
user388189
  • 201
  • 1
  • 9
  • Using the Taylor series for $e^u$ shows that this limit is equivalent to $$\lim_{n\to\infty}\sum_{k=0}^\infty\frac{n}{(n+2k+1)k!}$$then you just need to justify the exchange of the limit and summation to get the result of $e$. – Peter Foreman Feb 22 '20 at 13:00
  • For general result, refer https://math.stackexchange.com/questions/2620986/proof-verification-n-cdot-int-01-xn-cdot-fx-mathrmdx-underset?noredirect=1 – Riemann Mar 17 '24 at 15:50

4 Answers4

8

Let

$$I_n=\int_0^1x^ne^{x^2}dx$$

$I_n$ is decreasing because:

$$I_n-I_{n+1}=\int_0^1x^n(1-x)e^{x^2}dx\geq 0$$

We want to find $\lim\limits_{n\to \infty} nI_n$. Integrating by parts, we can see that:

$$I_n+\frac{2}{n+1}I_{n+2}=\frac{e}{n+1}$$

Now, since $I_n\geq I_{n+2}$, we have:

$$\frac{e}{n+1}\leq I_n+\frac{2}{n+1}I_n\Rightarrow I_n \geq \frac{e}{n+3}$$

Also because $I_n\leq I_{n-2}$, we get

$$\frac{e}{n-1}=I_{n-2}+\frac{2}{n-1}I_n\geq I_n+\frac{2}{n-1}I_n\Rightarrow I_n \leq \frac{e}{n+1}$$

Chaining these inequalities together, we have:

$$\frac{e}{n+3}\leq I_n \leq \frac{e}{n+1}$$

or

$$\frac{n}{n+3}e\leq nI_n\leq \frac{n}{n+1}e$$

Squeezing, we conclude that:

$$\lim\limits_{n\to \infty} nI_n = e$$

LHF
  • 1
6

You have the right idea about changing the variable, just a different change: $u=x^{n+1}$ $$ \begin{align} \lim_{n\to\infty}\int_0^1nx^ne^{x^2}\,\mathrm{d}x &=\lim_{n\to\infty}\int_0^1\frac{n}{n+1}e^{u^{\frac2{n+1}}}\,\mathrm{d}u\\ &=\int_0^11\cdot e^1\,\mathrm{d}u\\[6pt] &=e \end{align} $$ Note that $\frac{n}{n+1}e^{u^{\frac2{n+1}}}$ increases monotonically to $e$ for all $u\in(0,1]$, and uniformly on compact subsets, so we can use monotone convergence, dominated convergence, or uniform convergence (on each compact subset) to justify the exchange of limit and integral.

robjohn
  • 353,833
2

You can get an upper bound because for $0\le x\le1$, $e^{x^2}\le e$ so $$\int_0^1nx^ne^{x^2}dx\le\frac{ne}{n+1}$$ We know that for $1-\epsilon\le x\le1$, $e^{x^2}\ge e^{1-2\epsilon+\epsilon^2}\ge e\cdot e^{-2\epsilon}\ge e(1-2\epsilon)$ because $e^{-x}\ge(1-x)$ for $x\ge0$, the latter function begin the linearization of the former at $x=0$ and the former being concave up. Also $$1-(1-\epsilon)^{n+1}\ge1-e^{-\epsilon(n+1)}$$ So a lower bound is $$\begin{align}\int_0^1nx^ne^{x^2}dx&\ge\int_{1-n^{-1/2}}^1nx^ne^{x^2}dx\ge\int_{1-n^{-1/2}}^1nx^ne(1-2n^{-1/2})dx\\ &=\frac{ne(1-2n^{-1/2})}{n+1}\left(1-(1-n^{-1/2})^{n+1}\right)\\ &\ge\frac{ne(1-2n^{-1/2})}{n+1}\left(1-e^{-n^{-1/2}(n+1)}\right)\end{align}$$ Since our integral lies between two quantities that approach $e$ as $n\rightarrow\infty$, the linit is in fact $e$.

user5713492
  • 16,333
0

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

With Laplace Method:

\begin{align} \lim_{n \to \infty}\int_{0}^{1}nx^{n}\expo{x^{2}}\dd x & = \lim_{n \to \infty}\bracks{n\int_{0}^{1} \pars{1 - x}^{n}\expo{\pars{1 - x}^{2}}\dd x} \\[5mm] & = \lim_{n \to \infty}\bracks{n\int_{0}^{1} \expo{n\ln\pars{1 - x}}\expo{\pars{1 - x}^{2}}\dd x} \\[5mm] & = \lim_{n \to \infty}\bracks{n\int_{0}^{\infty} \expo{-nx}\expo{\pars{1 - 0}^{2}}\dd x} = \bbx{\Large \expo{}} \end{align}

Felix Marin
  • 94,079