Let $S_n$ be closed interval in euclidean plane $\mathbb R^2$ with ends in $(\frac{-1}{n}, \frac{1}{n})$ and $(\frac{-1}{n}, 1)$.
Moreover let $T$ be boundary of triangle with vertices $(1,1),(0,0),(-1,1)$.
A. Prove that subspace of plane $$ X = T \cup \bigcup_{n=1}^{\infty} S_n \cup \{ (0,q) : q \in \mathbb Q \wedge q \in [0,1] \} $$ is connected space but not arc connectedness
B. Let $Y = \bar{X}$ - closure of the set $X$ in euclidean plane. Prove that $Y$ is not contractible space.
My attempt:
A. Let $U,V$ be open sets such that $U,V \subset \mathbb R^2$ and $X \subset U \cup V$. Assume that $(U \cap X) \cap (V \cap X)= \emptyset$. Now we want to prove that $$(U \cap X) = \emptyset \mbox{ or } (V \cap X)= \emptyset $$
If $ X \subset U \cup V$ then $T \subset U \cup V$. So $T \cap V \neq \emptyset $ or $T \cap U \neq \emptyset$. Without lost of generality assume that $T\cap U \neq \emptyset$. Then $T \cap V = \emptyset$ because $T$ jest connected ($T$ is sum of three intervals and they create triangle and interval is connected). So $T \subset U $.
And that's why $\forall_{n} S_n \cap U \neq \emptyset $ because boundarie of triangle $T$ are ends of intervals from $\bigcup _{n=1}^{\infty} S_n$. Each interval is connected. Let $(\frac{-1}{n}, 1) \in \bigcup _{n=1}^{\infty} S_n$ and $J= I ((\frac{-1}{n}, \frac{1}{n}), (\frac{-1}{n}, 1))$. We know that $J \subset U \cup V$ and $J \cap U \neq \emptyset$ . That's why $J \cap V = \emptyset$ because $J$ is connected, so $J \subset U $. So we have that $T \cup \bigcup_{n=1}^{\infty} S_n \subset U$.
My problems:
Firstly, I want somebody to check my solution.
Secondly, I am not sure how can I prove that:
$$ \{ (0,q) | q \in \mathbb Q \wedge q \in [0,1] \} \subset U$$
If it comes to B. I didn't find any idea how to solve that.