Find $E\left[|\dfrac{X}{Y}|\right]$, $E\left[\dfrac{|X|}{Y}\right]$ and $E\left[\dfrac{X}{|Y|}\right]$ for $X,Y iid \sim Exp(\lambda)$
Does this differ from solving $E\left[\dfrac{X}{Y}\right]$?
I would solve $E\left[\dfrac{X}{Y}\right]$? by finding the density of Z and then finding the expectation of the random variable Z with this distribution.
- Distribution of $Z = Y/X$.
If $X,Y$ are independent exponentials with rates $\lambda,\mu$, then $Y = ZX$ and one way to do it is \begin{align*} f_Z(z) &=\int_0^\infty f_X(x)f_Y(zx)\left|\frac{dy}{dz}\right|dx\\ &= \int_0^\infty \lambda e^{-\lambda x}\cdot \mu e^{-\mu zx}|x|\,dx\\ &= \int_0^\infty \lambda\mu e^{-(\lambda +\mu z)x}|x|\,dx\\ &= \frac{\lambda\mu}{(\lambda+\mu z)^2}. \end{align*}