Assume the given solution $u$ and note that it is smooth almost everywhere.
Compute the partial derivative (define $C:=C_{N,p}$)
\begin{align}
\partial_i u
&= -C \partial_i |x|^\frac{p}{p-1}
\\
&= -C \frac{p}{p-1} |x|^{\frac{p}{p-1}-1} \partial_i |x|
\\
&= -C \frac{p}{p-1} |x|^{\frac{p}{p-1}-1} \frac{x_i}{|x|}
\\
&= -C \frac{p}{p-1} |x|^{\frac{1}{p-1}-1} x_i
\,.
\end{align}
Gather for the gradient
\begin{align}
\nabla u
&= -C \frac{p}{p-1} |x|^{\frac{1}{p-1}-1} x \,.
\end{align}
The norm of the gradient (assume $C>0$)
\begin{align}
| \nabla u |
&= C \frac{p}{p-1} |x|^\frac{1}{p-1} \,.
\end{align}
The factor needed for the $p$-Laplacian
\begin{align}
| \nabla u |^{p-2} \nabla u
&= \left( C \frac{p}{p-1} |x|^\frac{1}{p-1} \right)^{p-2}
\left( -C \frac{p}{p-1} |x|^{\frac{1}{p-1}-1} x \right)
\\
&= - \left( C \frac{p}{p-1} \right)^{p-1} |x|^{\frac{p-2}{p-1}+\frac{1}{p-1}-1} x
\\
&= - \left( C \frac{p}{p-1} \right)^{p-1} x \,.
\end{align}
For the $p$-Laplacian we need to compute the divergence of the above computed factor
\begin{align}
\Delta_p u
&= \nabla \cdot \left( | \nabla u |^{p-2} \nabla u \right)
\\
&= \nabla \cdot \left( - \left( C \frac{p}{p-1} \right)^{p-1} x \right)
\\
&= -N \left( C \frac{p}{p-1} \right)^{p-1}
\\
&\overset{!}{=} -1
\\
\implies C &= \frac{p-1}{p} N^\frac{1}{1-p} = C_{N,p} \,.
\end{align}
Note, that there are no special cases for $p>2$.