$3*2^{2017}$ has only prime factors of $2$ and $3$ an $2^{2017} + 1$ is not divisible by $2$ so the only thing that can cancel out is $3$. But does $3$ cancel out?
$2 \equiv -1\pmod 3$ so $2^{2017} + 1\equiv (-1)^{2017}+ 1\equiv -1 + 1 \equiv 0\pmod 3$ so, yes, $3$ cancels out.
So $\frac mn = \frac {2^{2017} + 1}{3*2^{2017}}$ so $m = \frac {2^{2017}+1}3$ and $n = 2^{2017}$.
So we need to find $m + n\pmod{1000}$.
$1000 = 8*125$ and by $n = 2^{2017}=8*2^{2014}\equiv 0 \pmod 8$ and be Euler's Th: as $\phi(125) = \phi(5^3)= 4*5^2= 100$ we have $2^{2017}\equiv 2^{17}\pmod {125}$.
Now $3$ is relatively prime to $8$ and to $125$ so $3^{-1}\mod 8$ and $3^{-1}\mod 125$ exist. And $m = (2^{2017}+1)*3^{-1} \equiv 3^{-1}\pmod 8$ and $m\equiv (2^{2017}+1)3^{-1}\equiv (2^{17}+1)*3^{-1}\pmod {125}$.
So $m + n \equiv 3^{-1} \pmod 8$ and $m +n \equiv 2^{17} + (2^{17}*+1)*3^{-1} \pmod {125}$.
.....
Deep breath
.....
so we need to figure out $2^{17}\pmod{125}$ and $3^{-1}\pmod {125}$ and $3^{-1}\pmod 8$.
...
$1\equiv 9=3*3\pmod 8$ so $3^{-1}\equiv 3\pmod 8$ and $m+n\equiv 3\pmod 8$.
$2^7= 128 \equiv 3\pmod {125}$ and $2^{10}\equiv 1024\equiv 24\pmod {125}$ so $2^{17} \equiv 72\pmod {125}$.
And $1\equiv 126= 3*42\pmod {125}$ so $3^{-1}\equiv 42\pmod {125}$.
So $m+n \equiv 72 + (72+1)*42\equiv 3138\equiv 13\pmod{125}$.
....
So $m+n \equiv 3\pmod 8$ and $m+n \equiv 13\pmod {125}$.
Now we need
$3 + 8m = 13 + 125k$
$8m = 10 + (8*15 + 5)k$
$8(m-15k) = 10 + 5k$
$8(m-15k) = 5(k+2)$
$m-15k = k+2 = 0$ will do.
$k=-2$ and $m=-30$ or
$3-8*30 = -237$ and $13-125*2=-237\equiv 763\pmod{1000}$
So I get $763$