Letting $f=1+a_n$ and $g=b_n$ in this answer, we get the following
Lemma: Suppose that $\lim\limits_{n\to\infty}a_n=0$ and $\lim\limits_{n\to\infty}a_nb_n=c$, then
$$
\lim_{n\to\infty}(1+a_n)^{b_n}=e^c\tag1
$$
If $\lim\limits_{n\to\infty}\frac{k^2}{2n}=\alpha$, then
$$
\begin{align}
\lim_{n\to\infty}\left(1-\frac kn\right)^{-\frac{n-k+1}2}\left(1+\frac kn\right)^{-\frac{n+k+1}2}
&=\lim_{n\to\infty}\left(1-\frac{k^2}{n^2}\right)^{-\frac{n+1}2}\,\frac{\lim\limits_{n\to\infty}\left(1-\frac kn\right)^{\frac k2}}{\lim\limits_{n\to\infty}\left(1+\frac kn\right)^{\frac k2}}\\
&=e^{\alpha}\,\frac{e^{-\alpha}}{e^\alpha}\\[9pt]
&=e^{-\alpha}\tag2
\end{align}
$$
Which is $\sim e^{-\frac{k^2}{2n}}$.