Prove that the function $\displaystyle f(x)=\frac{x}{x^2+1}$ is continuous at $x=-1$ using the definition of continuity.
My attempt:
Need show that $\forall {\epsilon > 0},\exists {\delta > 0}$ s.t $\forall {x \in R },\ |x - (-1)| < \delta \implies |f(x) - f(-1)| < \epsilon.\\ |f(x) - f(-1)| = |\frac{x}{x^2 + 1} - \frac{-1}{2}| = |\frac{2x - (-1)(x^2 + 1)}{2(x^2 + 1)}| = |\frac{2x + x^2 + 1)}{2(x^2 + 1)}| = |\frac{(x+1)^2}{2(x^2 + 1)}|\\ |\frac{(x+1)^2}{2(x^2 + 1)}| < |\frac{(x+1)^2}{(x^2 + 1)}| < |(x+1)^2| \text{ since } (x^2 + 1) \text{ is at least 1}\\ |(x+1)^2| = |x + 1|^2 < \epsilon \\ |x + 1| < \sqrt{\epsilon}$
Therefore set $\delta = \sqrt{\epsilon} \text{ and } \forall {\epsilon > 0}, \ \forall {x \in R }, |x - (-1)| < \sqrt{\epsilon} \implies |f(x) - f(-1)| < \epsilon$
is this a valid way of proving this? Or is there a better way?